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ABSTRACT

This study is concerned with information theory and its

relevance to the study of complex systems° Wheninformation about

every detail of their activity is kept, manysystems are too complex

to be manageableand can only be dealt with by sacrificing detail°

It is shownhere that multivariable information theory is capable

of eliminating muchdetail while preserving information about the

interrelations between parts of a system, even whenthose interrelations

are very complex° A procedure is described and exemplified, for

example, which is helpful in the decomposition of hierarchical systems°

It is shown, amongother results, that when two variables

are related (in the set theoretic sense) the transmission between

them is maximized when their behaviors are isomorphic. This obser-

vation leads to an algorithm for the computation of channel capacity

for arbitrary finite-state systems of a very general type.

The importance of information in regulatory processes is

discussed and quantified, and several basic regulatory schemesare

discussed in terms of the information involved, showing in an exact

way how information transfer and channel capacity limit the ability

of any system to act as a successful regulator.
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!. INTRODUCTION

Norbert Wiener defined Cybernetics as the science of control

and comm_uication, in the animal and machine_. By that definition_

this paper could be called a cybernetic study, for it is concerned with

communication within and between systems, and also with the role of

comm_uication in control.

Whenscience attempts to gain insight into real-world systems,

it invariably begins by dismissing, explicitly or implicitly, manyof

the variables which might be considered but which are thought to be

irrelevant or inconsequential. A scientist studying maze-learning in

rats m____consider the phase of the moon_the length of the rat's

tail, the color of the experimenter's tie, and so on as variables, but

in fact he would be silly to do so unless he had reason to think them

relevant. Science deals not with real-world "systems" but only with

models, i.e., abstracted versions, of them.

Until recently, the systems which were studied were sufficiently

simple that after all of the irrelevant variables were discarded, the

number remaining was small enoughto give a manageablemodel. When

genuinely complex systems are tackled, however, the old procedure

doesn't work; either one is forced to discard relevant variables to

get a model of manageablecomplexity, which is then of poor quality,

or else one ends up with a model which is of good quality but itself

unmanageablycomplex.

The information theory of complex systems, which is the

subject of this paper, can in a sense be viewed as a way of dealing



with the latter type of model, by discarding details and only keeping

information about its functional structure--which variables affect

which and to what degree, which variables are statistically "close" to

which others, and so on. Chapters II, III, and IV are concerned with

this "communication structure" of systems.

The information theory used here is not the highly specialized

theory developed for use in sophisticated communications systems, but

rather is an outgrowth of the suggestion by McGill 2, Garner B, and

Ashby 4 that the theory formulated by Shannon 5 could be extended to n

variables and could be usefully applied to the study of relations in

systems of many variables.

Information theory is important for the study of complex

systems in another closely related respect. Most complex systems

found in nature, and many of man's complex constructs, survive by

acting appropriately on the basis of information they receive; they

regulate their actions on the basis of information. That virtually

all organisms which have survived the process of natural selection

have information sensors bears witness to the importance of information

to survival. Indeed, the almost incredible sensitivity and delicacy

of the sensory apparati developed in the course of evolution lead one

to suspect that primacy in the "struggle for survival" goes to those

who can best obtain and use information; we humans have at least five

distinct systems for taking in information from the environment, and

additional systems for sensing our internal conditions.

The channel capacity of a system is a bound on the ability

of the system to accept, transform, and act on incoming information,
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and as such it is a quantity important for the survival of the system°

In chapter III is introduced an algorithm for the calculation of chanr_el

capacity for a very general type of system; in chapter IV information

transfer in systems is discussed in more general terms°

Chapter V, on Regulatioro,_was inspired by but goes consider,_

ably beyond Ashby's Law of Requisite Variet6o In that chapter we

discuss the relationship between regulation and information-transfer

and show that the two are closely linked°
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II • NOTATIONS AND CONVENTIONS

Introduction

Section 2olwill set the basic notations to be used hereafter°

It does not contain any newmaterialo Section 2.2 will provide

conversion techniques between discrete-variable and continuous-variable

distributions, allowing us to deal thereafter with discrete distributions

only. Section 2°3 will justify our exclusive use of the discrete time

variable.

2.1 Basic notations

Matrices will be denoted by underlined Latin capitals, e.go, _,

e

Constants will be denoted by lower case Latin letters, usually

early in the alphabet, eogo, a, h, m12o

Sets will be denoted by Latin capitals or by braces enclosing the

elements, e.g., B = {bl, b2, b3} o

Variables will be denoted by upper ease Latin capitals usually

toward the end of the alphabet, eog°, X, Yo Compound variab!es whose

components are shown explicitly will be denoted with • and _ signs,

e.go, <Xl, X2> or even <X, <YI' Y2 > ' Z >o If S is an ordered set

of variables IX1, X2, .oo, XM} , kS > is the compound variable

XI, X2, .oo, XM >o



Values taken by a variable will be denoted by lower case versions

of the letter representing the variable, possibly with subscripts o The

set of values a variable can take will be denoted by the Latin capital

representing the variable° For example, the set X = [Xl, x2, x3] is

the set of values taken by variable X o Using the same symbol for the

variable and its set of values is often convenient, and the context will

always make clear in which sense the symbol is being used°

Values of a variable, being merely the elements of a set associated

with a variable, need not be numbers, and no metric is implied° If the

set is finite, the elements may be ordered and numbered arbitrarily for

convenience, and it is frequently useful to deal with such numbers as

equivalent to the values, eogo, to equate "X takes its third value"

with "X = B"o

Functions will be denoted by lower case Greek letters, or by f or

g_ The domain and range sets are a fundamental part of a function's

definition; they are displayed as, for instance, fl : Y -_ A, which is

read "Function fl maps Y into A"o

A s__stem S is an ordered set of variables, and the variables are

members of So By system S we will also mean the product set whose

components are the value-sets for the variables in S. If there is a

relation (in the set theoretic sense) over the members of S, the subset

of the product set implied by that relation will be called the sjstem

relatio______n;some authors use the term system to refer to what is here

called the system relation° If the variables in S are associated with

machines, "the system" can also refer to the collection of machines, if

no confusion resultSo The term system may thus be used in three distinct

ways; this should cause no confusion in practice°
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A system-value is an ordered N-tuple with one component for each

variable in S; e.g., S _ _X1, X2, X3} has the value _2, 4, 5> when

X I = 2, X 2 = 4, and X 3 = 5.

A Machine-with Input (M_I) is a sequential machine described by

a function of the form f : St x It -_ St+l , that is, st+l = f(s t, it),

where sm is the "state" at time _ and iN the "input". This is usually

written f : S x I -_ S with the understanding that f maps the "present"

state and input into the "next" state. A MWI is diagrammatically

represented as shown in Figure l o Both I and S may be product sets.

A _ is a machine described by a function of the form

it tg : -_ 0t, that is, o = g(it), in which o_ is the "output" at time

and i_ the "input". This is usually written g : I -_ 0 with the under-

standing that g maps the "present" input into the "present" output.

A mapper is represented as shown in Figure 2o

A Moore automaton is a machine consisting of a MWI f : S x I --_ S

plus a mapper g : S -* O, as shown in Figure 3o

A _l e associated with a system S = _X1, X 2, ooo, XM}

is an M-dimensional matrix whose entries are all nonnegative real numbers.

It is denoted N(Xl_ X2, ooo, XM) , N(S), or just N if the argument is

understood. The typical element in _N is nXl' X2' o.°, XN , with

particular subscripts indicating particular system-values. Each element

gives the real number (ordinarily, an integer) associated with the

frequency of the system-value to which it corresponds; e.g., if

S = { Xl, Yl' Y2} ' the entry n2, 4, 5 = 3 indicates three occurrences

of the triple <X l, Y1, Y2 > = <2, 4, 5>o The sum of all entries in

a table N(S) is denoted by N(S) or just No
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Thus N gives the frequencies of occurrence of all the system-

values; the entries of N are presumably obtained from some data-gathering

process, perhaps by observation of a physical system over a long period.

It is not our purpose here to discuss how frequency tables may be obtained,

but only to deal with tables already provided°

If a system relation holds over the members of S, some of the

entries of N will necessarily be zero, and conversely. (If N is one-
m

dimensional, the relation becomes a property in set theoretic language°)

Somewhat more generally, N can be interpreted, after suitable normali-

zation, as the characteristic function, and therefore the descriptor,

of an M- ary fuzzy relation 7 on S.

A frequency table associated with S = { Xl, X2, ..., XM_ can

also be associated with other systems, derived from S by grouping the

vat,o= For --

Y = < X2, X3 >, the frequency table can be associated with the system

S' = {Xl, YIo This just amounts to noting the obvious fact that an

n-tuple of variables can be considered as a single variable with a

new name o

An important operation on N(XI, X2_ ..o, XM) is that of collapsing

the frequency table over one or more of its dimensions (variables).

Collapsing over X i gives a new table N(XI, X2, .oo _ Xi_l, Xi+l, .oo, XM)

whose entries are obtained by summing over the X i dimension:

-Z nXl'nx I, X2, ooo Xi_ I, Xi+ I' °°°, XM X 2' "'-, XM

X i

For example, collapsing N(X, Y) over X gives N(Y):
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X

Y

o 2 4 x

I I I -I

For a one-dimensional frequency table N(X), the _,

denoted H(X), is defined to be zero if N = 0 and is defined as follows

if N > O:

H(X) =
nX log 2 nx
N N

X

1

The summation runs over all the cells in the frequency table°

Henceforth, in accordance with information theory standards, we

will assume logarithms are always to base 2, so that the unit for

entropy, etc. is the bit.

With an M-dimensional frequency table N(X1, Xy, ooo, XM) for a

IXl' XY' °°°' XM_' the entropy of system S, denotedsystem S

H(X1, Xy, o.., XM) , H(S), or H(N), is zero if N = 0 and otherwise is

defined by

X X
1 2

n n

°°°I XI'X2'N'°° 'XM log XI'X2'N'°° 'XM

X
M

the summation running over all cells in N(S)o

The expression nxi/N may be interpreted as a probability, if this

interpretation is useful, but to avoid unnecessary connotations we will
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generally avoid doing so. The term "probability" carries a connotation

of permanence and reference to future events, while the frequency table

connotes a reference to events of the past - although the table in the

abstract is of course just an array of numbers, with no time reference°

If the assumptions under which a system is being studied allow

the probability density function to be meaningfully defined, then the

probability densit_ function for a system S m { XI , X2 , ..., XM ] is

denoted P(Xl, X2, .oo, XM) or p(S) and is defined in the ordinary way°

In this case, H(X) and H(S) are defined as follows:

H(x) = _ _ p(x) log p(x) dX

_ @0

•dX dX o..dX
1 2 M

The operation of collapsing a frequency table over a variable Xi

corresponds, with probability densities, to integration over Xi:

p(xl_x2_ ooo_xi®1,Xi+l,-ooXM)= ) p(Xl,x2, oo.,xM)_i

The relation between discrete and continuous distributions will

be considered in more detail in section 2°2°

For N(X,Y), the entropy of X conditional on Y is denoted by

Hy(X) and defined by

Hy(X) = H(X, Y) _ H(Y)

To obtain H(Y) from N(X_Y) requires collapsing N over the X-dimension,

thus obtaining N(Y); H(Y) is then obtained from N(Y)o

The obvious generalization of Hy(X) is HyI'Y2'" "°'Yn(XI'X2'°°''XM);



ll

Hs2(SI) , the entropy of SI conditional on $2_ and defined by

H%(S l) = H(S 1U%) - H(%)o

Normally, Hs2(S1) is of interest only if S1 and S2 are disjoint° The

set SIU S2 is an ordered set, just as S1 and S2 are ordered sets°

For a two-dimensional table N(X_Y)_ the transmission between

X and Y, denoted T(X : Y), is defined by

T(x : Y) + H(Y) - H(X 

The expression on the right is equal to H(X) ® Hy(X) and to H(Y) - Hx(Y),

but we take the definition above as primary°

T(X : Y) can be generalized in the obvious way to T(S 1 : $2) ,

but it can be generalized in a more fundamental way by introducing more

single variables° The total transmission over the system S = _XI,X2,ooo,XM_

denoted T(X 1 : X2 : oo. : XM) , T(S), or T(N) where N is the frequency

table for S, is zero if S contains only one variable and otherwise is

defined by

T(X 1 : X2 : ooo : XM) =H(Xl) + H(X2) + ooo + H(XM)

® H(X1, X2_ ooo, XM)o

T(S) is a measure of the total constraint holding between all the vari_

ables in S - a measure of the degree to which the variables are statis-

tically interdependent° If T(S) = 0, the system relation is of a

degenerate type, being merely the conjunction of one-dimensional

properties on the several variables° (These statements will be justified

later°)
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The transmission over a s_stem SI = _ X I, X2, .°., Xm_
conditional

= YI' Y2' "°" Yn is denoted by Y2' "''' Yn

or Ts2(SI) and is defined by

Ts2(S I) = Hs2(X I) + Hs2(X 2) + ooo + Hs2(X m) - Hs2(SI).

The transmissi°n between S.1 = _XI, X2' "''' Xm_ _---_-_ =_YI' Y2' °°°' Yn_

is denoted by T(S 1 : S2) and is defined by

T(S 1 : S2) = T(WXI, X 2, o.o, Xm> : < YI' Y2' °''' Yn > )°

All these entropies, conditional entropies, transmissions, and conditional

transmissions are non-negative quantities measured in bits, and they

all have familiar interpretations discussed in the literature.

A less familiar entity is the interaction° Given a three-

dimensional frequency table N(X, Y, Z), the interaction between X_ Y; an d

Z is denoted by Q(X, Y, Z) and is defined by
m

Q(X, Y, Z) = Tz(X : Y) - T(X : Y)

It is easy to show, by collecting terms, that

Q(X,Y,Z) = _x(Y:Z) - T(Y :Z)

--Ty(X:Z) - T(X: Z)

so the definition is actually symmetrical in the variables. Q(X, Y, Z)

is a measure of how much the transmission between two of the variables

is conditional on the third; Q may be either positive, negative, or

zero.

The interaction between x__y an__d Z conditional on W, denoted

Qw(X, Y, Z), is defined like Q(X, Y, Z) but with every H subscripted

with a Wo
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Q_'X_ Y, Z) may be generalized in an obvious way tc Q(SI_ S2, S3)

or more fundamentally by introducing more variables in the argument° The

n-variable interaction over the 9_ystem S = [ Xl, X2, ooo, Xn} , denoted

Q(Xl, X2_ o oo_ Xn) or Q(S), is defined iteratively as follows:

Q(Xl °°°9Xnoi,Xn)= QX (Xi ooo,Xn_l)
n

Q,(Xl, X2_ ooo_ Xn® I)

Interactions have been interpreted and discussed in papers by Ashby 4

and McGill_o

2.2° Approximate conversions of discrete to continuous distributions

and vice versa

It is frequently convenient to replace a continuous distribution

p(X) on a continuous variable X by a discrete distribution P(Y)

1

(= S N (Y)) on a discrete variable Y, or to do the reverse° This is

because some operations are easier in the discrete domain, some easier

in the continuous domain° The problem we attack in this section is, what

is the relationship between the entropy of the original distribution

and the entropy of the [ approximately] transformed distribution? In

effect we are looking for a bridge across the gap between continuous

and discrete - variable information theories, a bridge allowing transfor-

mations in either direction° We shall show that if the transformation

is done with care, the entropies of the original distribution and of its

transform differ only by a constant and that transmissions and interactions

are unaffected by the transformatio_o
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2.2.1. Transformin_ a continuous distribution to a discrete distribution

Let Sc X2, .., be a set of continuous variables for

which the probability distribution is P(X1, X2, ..., XM) -- P(Sc), and

suppose that for each X i in Sc, P(Xi) is finite within an interval Ii

of finite length Li and is zero (or may be so approximated) outside Iio

Thus,

p(xi)dxi ~--l
I i

(Ii need not be a connected interval.) Let Ii be divided into Ni

subintervals Iil, Ii2 , ooo, IiN i, each of length Li/Ni.•

II , 12j , ..., IMj , a totalWithin the space whose edges are Jl 2 M

probability of

P(Jl' J2' "'°' JM ) = _

Ilj I I2j 2

f.,
! p(s )_ _ ..._. . @

J c 1 2 M

I1_ N

is enclosed; the average value of the probability density within that

space is

P(_f'J2'"°°'JM) P(Jl,J2,ooo,JM)

°°°S Vo
I I I

lJ 1 2J 2 MJ M

where
L L2ooo

If in each such space P(Sc) is replaced by P(Sc) , the resulting distri-

bution is an approximation to the original, and its quality depends on

the numbers Ni, i _ i _ Mo The entropy of the approximation,



Happx _ _:_ ooo

I 1 12 IM

i5

will of course equal, in the limit as all N. go to infinity, the entropy

of the original distribution_

I1 12

That is,

C

ooo_ p(so) log_(s) _1_2ooo_o

I M

lim

_l-*_ _appx(sc)_ _(sc)°

N2-*_

aoo

Now the numbers P(JI' J2' °°°' JM ) constitute a discrete distribution

over a set Sd = _ YI_ Y2' °°'' YM_ of discrete variables, with Yi

corresponding to Xi:

P(YI = Jl' Y2 = Jn' "°°' YM = JM ) = P(Jl' Jn' °°'' JM )°

The entropy of this discrete distribution is

N 1 N 2 NM

Jl=l j =l jM=l

Theorem IIol

P(jl,Jn, ooo,JM) log Y(Jl_Jn, oo.,JM)o

The relation between H(Sd) and HappxQSc) is given by

I N1 N2 °°° NM )_(se)= Happ_(Sc)+ log _I L2 °'°I,_ o
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Proof:

Since p(Sc ) is uniform within each of the volume segments, the

integration necessary for finding Happx(Sc) reduces to a summation:

ttappx(S c) = _ Jl=l J2=l °°"
log

P(Jl'J2'''''JM) 1Vo •Vo

---- _ _ "'" _ P(JI' J2' "''' JM ) log P(JI' J2' "°°' JM )

+ E "" E P(Jl,J2,--.,JM).logvo

= H(Sd) + log Voo

Q. E. Do

Therefore, H(Sd) _ H(S c) + log_-_? , with the quality of the

approximation depending on the numbers N1, N2, ..o, NM. Clearly this

situation holds even when the approximation to P(Sc) varies, within

reason, from the rigidly defined P(Sc). _X_

As an example, suppose p(X) =_e for X _ O; for this

distribution H(X) = 2.04 bits° See Figure 4° If p(X) is approximated

as zero outside the interval [0, 4) = I and the interval is divided

into N = l0 equal parts, we obtain the following probabilities for the

subintervals:

subinterval probability

[o, o04 ) .1585
[0.4, o°8 ) 01523
[o.8, 102 ) 014o7
[1.2, 106 ) .1248
[1.6, 2 ) .1064-
[2, 204 ) .0872
[2.4, 2.8) .o686
[2.8, 3.2) .o519
[3.2, 3.6) .0377
[3o6, 4 ) .0264



p (X)

0,4

0.3

0.2

O.I

0
0 I 2 3 4 5

=X

Fi gu.re 40
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Calculating H(Sd) with these numbers, and ignoring the fact that they

do not total 1.0OO0, we obtain

H(Sd) = 3.14 bits

and therefore H(Sc) = H(X) _ 3.14 - log _I
i.82 bits.

If the probabilities for the subintervals are not calculated

exactly but are only approximated, for instance by multiplying p(X)

at one end of the subinterval by L/N = 0.4, other estimates for H(X)

are obtained.

_"Probability" for IX, X+0.4)= 0.4 p(X)_ :=_ H(X)= 1.85 bits.

_"Probability" for IX, X+0.4) = 0.4 p(X+0.4)) _ H(X)= 1.78 bits.

All of these values agree reasonably with the true value of 2.04 bits,

considering all the approximations made for the calculation.

2.2.2. Trans_rmin_ a discrete distribution into a Continuous distribution

Given a discrete distribution P(Sd) on _et Sd = YI' Y2, "'"

a continuous distribution can be formed by the reverse of the process

described above; to do so is of little use, however, unless the continuous

distribution thus obtained is subsequently approximated by another

continuous distribution which is easier to deal with -- for which

integrations we easier, for instanceo

2.2. 3. The effect of continuous_discrete transformation on transmissipns

and interactions

The entropy of a continuous distribution and its discrete

counterpart differ by a constant (neglecting approximation errors.)

Transmissions between continuous variables, and transmissions between

their discrete counterparts, are equal; T is unaffected, that is to say,
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by the transformation° For suppose we have a set of continuous v_riables2

Sc, with a distribution P(Sc) , and a corresponding set of discrete

variables Sd with the transformed distribution P(Sd):

T(sc)--_(xI - x2 _ ooo-x_)--H(xI)+ H(X2)+ ooo+ H<_)

T(Sd)= T(YI:Y2_ °°°:YM)= _(Yl)+ H(Y2)+ oo°+ _(YM)

" H(YI' Y2' °°°' YM )°

From the theorem,

H(Y1) _ H(XI)+ log(_ _l)

H(Y 2) _ H(X2)+ log<_ _2)

ooe

H(YI' YZ' "''' YM ) _ H(XI' Xa' °°°' XM) + log[_--o.

Therefore

T(Sd) _ IH(XI) + logI_)]+ o.o + [ H(X M)

""T(S)
c

+ o.o+logNM -log\_i_2N

Qo Eo Do
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Interactions, which are defined by differences between trans-

missions, are therefore also unaffected by the transformation.

2.2.4. General comments on the transformations

Because transformations between discrete and continuous variables

and distributions are possible, we do not need to make separate statements

for each type but may confine ourselves for the most part to discrete

variables, which are generally easier to handle and which fit more readily

into the framework of machines-with-input and mappers. When it seems

appropriate, we may make explicit statements about the continuous case,

but usually that case will be carried along implicitly.

There is usually a certain amount of error involved in approxi-

mating a continuous distribution p(S c) by another, _(Sc), which is

uniform within each small volume--the more finely the sample space is

cut, the smaller will be the error, in general. This error corresponds

to "quantization noise," which has been studied elsewhere, and how much

error of this type to allow is a pragmatic question which can only be

decided from case to case°

Some types of distributions do not allow transformation and in

fact are outside the class of distributions information theory can

handle, for instance (with_ being the unit step function):

p(x) (XoOoS)+ 0o p(x)

See Figure 5.

It is meaningless to talk of H(X) for a_v distribution which mixes

delta "functions" with finite functions°
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2.3. Discrete-time convention

Just as it is generally easier to deal with discrete distribu-

tions, so is it generally easier to deal with time as a discrete

rather than a continuous variable. For one thing, machines-with-

input are defined on the basis of discrete time, as are automata,

and it is with these that we will deal later. For another, the

systems with which one deals in engineering are almost exclusively

those for which the approximation of finite bandwidth is appropriate,

and to which the Sampling Theorem may therefore be applied to put

time on a discrete basis; the errors involved can be made as small

as desired by reducing the size of the unit time interval or quantum.

Another reason for treating time as a discrete variable is

that we shall frequently be concerned with the values a variable

takes over a time span; the value it takes at time _is in effect

a variable; were we to consider all the values over the time span,

we should have to deal with an uncountable number of variables and

an unmanageable sit1_tion. By quantizing the time variable, this

problem is avoided.

Finally, much machinery developed for Markov processes is

based on the assumption of a discrete time variable, and to take

advantage of that machinery we must employ discrete time. So

henceforth, unless explicit mention is made to the contrary, we will

assume time to be a discrete variable.
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IIi o _T m_SO_._ PE_._, IN ii_OPaV_TIC'N _'EORY

Introduction

In this chapter we will discuss several resalts i_. information

theory, whose applications are not limited to the study of complex

systems° Since the focus of this paper is cm complex systems, the

results will be discussed with a bias in that direction, but the

results themselves are basically mathematical and applicable to other

situations° All of the results, however, are useful, in the study of

complex systems and find applications, explicitly or implicitly, in

the succeeding chapters.

3.1o Operations on the frequency table which leave H_ T, and__uncha_ed

Given N(S), a frequency table for the set of variables S_

certain common operations on N leave all H's, Tts, and Q_s unchanged°

These are:

10

o

Permuting the order of the axes (for two variables,

transposing N; for more variables, permuting the order of

the variables in S = _ Xl, X2, ooo, XM_ , which is an

ordered set°)

Changing the order in which the values for a variable are

listed along the axes (for two variables, permuting rows

and/or columns°)
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3. Multiplication of all the entries in _N by the same positive

constant.

Another operation leaves T' s and Q' s unchanged but reduces some H' s; if

there is a variable XI in S with two values xI and x{ such that

= K.n (K O)
nXl,X2, oo. ,XM X'l,X2,""" 'XM

for all values of X2, .o., XM (for two variables, if two rows or

columns are proportional), then N may be partially collapsed by

summing over those two values, i.eo, by setting

n ! =:x ,X2,oo.,xM nx1,x2,.o.,XM÷nxL,x2,...,&

n t _-- Oo

x{,x2,.°°,xM

This last statement is a consequence of the Collapsing Theorem

which is proved and discussed in section _.2 .

We shall use these operations freely in what is to follow,

usually without an explicit reminder of their information-preserving

property. The fact that variables can be relabeled freely is particu-

larly important in several proofs.

3°2° Collapsing theorems and their consequences

Introduction

The operation of collapsing a frequency table N over one of its

dimensions, say over the XM dimension, reduces the H and the T of the

table° If S = [XI,X2,o.o,XM_ and S' = _X1,X2,...,XM_I_ are the
L 3 t J
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original system and the system afte_ coiiapsing_ then

• (s') -- T(s) _ _<,: xi_x2_..° _xM_ 1 _, : _)

xM= T(S ) : )

(Ashby 8 ), showing that H and T both decline by a nonnegatlive amo_to

For interactions,

The sign difference between the interaction equation and the others

is a consequence of the definition of Qo

The collapse of N cver XM corresponds to_ or implies, complete

disregard of the value of XM; N _, the resuLt_ is the table for a system

in which XM is not considered a variab]e o As such, collapsing is a

valuable operation; but what if cne wishes to keep XM as a variable

while losing the distinction between so=me of its values? For example,

if XM takes values l, 2, 3, 4, and 5, one might be interested only in

whether the value of XM is greater than 2_ or not. A new variable

X_ with two values could be introduced, related to X by _,

XM 12345

11222

r

and a new system S' =_XI, X2' ooo, XM,_,l_ X_Idefined; thi_ section

'_ _' T(S _ and Q_'S_answers the question of how H(S) a_d _(S ), T_S/ and ), /

and Q(S') would be related in that case°
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From another point of view, this section is important for the

situation in which a system (or its frequency table) can be observed

only through a mapping which loses information about the variable-

values, as would be the case, for example, if an observer were watching

the state-changes in a Moore automaton via its many-to-one output

function. The Collapsing Theorems give a means of evaluating how much

the H's, T's, and Q's would decline (or possibly rise, in the case of

interaction) due to the mapping.

.2.1. Collapsing lemmas

We consider a system S = [ X, Y} and its frequency table

N(X, Y) or just N:

N
m

xI

x2

o

X •

o

x A

Y

Yl Y2 "-- Ym-i Ym

nl,m-i nl,m

• •

n21 •.. nA,m_ I n2,m

We will partially collapse N over Y by combining the last two columns,

representative of combining any two rows or any two columns (see

section 3.1). To this end we define a new variable Z, related to Y

by the mapping _: Y-_Z:

$ Yl Y2 "" Ym-I Ym
zI z2 ... Zm_ I Zm-I
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The frequency table for _ _ _ °_'

N

X

xI

x2

o

o

X

zI z2 ooo Zm_ I

ni,l nl_2

n2,1 n2,2.

oo° nl,_m_l

n_ I ooo n_,m_ 1

and N_' are related by

I ni,j
n I
i,m,_,

if j < m-I

+ ni,m if j = m_l.

We denote the sum of the entries in the jth column of N by Nj, and of

course the sum of the Nj's by No The entropy of the Jth column of N

will be denoted Hyj(X)o

The last two columns of N constitute a frequency table

N* X*.Y*)"-- _( . ..

y_-

X _

x1

x2

o

o

e

x_

Ym_,i Ym

ni,m,-i nl,m

o o

a

n_,m_l n_m

with column entropy H(X_) and row entropy ._gv_'o._,:.._.)
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The transmission in N* is T(N*), and the sum of its entries is

N*. The Collapsing Le_ for Trsmsmissions in this simplest case is:

Lemma III. i

T(s)-T(s')= _ T(_)N

In words, the transmission lost through partial collapsing is

the transmission contained in the frequency subtable which is collapsed,

times the relative weight of the subtable.

Proof:

T(s)--H(x)- _(x)

--H(x)-
m

_-_l _ (x)Hyj

= H(x)
m-2

j--1 _ Hyj(x)--F- Hym-l(X)- Hym(X)

T(S')=H(X)
m-2

I 5i _m-l+_m
j=l N HzJ (X) " N Hzm-i (X)

T(s)- T(s')- %-i+_ %-iN HZm_l(X) - _ Hym. 1 (X) - -- Hym(X )

_m-l+_m[N Hzm_l(X)

= _- H(x*)- Hy.(X*)

N _

= _- T(x*:Y*)

Q.E.D.
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The Collapsing _mma for Entropy is

Lemma 111o2

N_

The entropy lost through partial colls,psing over Y is the

entropy of Y conditional on X in the sabtable being _co=.=.apsed,.... multiplied

by the relative weight of the subtableo

Proof: H(8) = -

m

i=l j=i N N

_(s')=- I
i=l

+ i_ m, log ./_m
N N _

I _ log
j=l N N _

o n_ ml

.o._ N N

_(s)- H{s')-- i,m +nizam log nim-i +nizam
i=l N

_l log ni_m-,l ni m ]N N N N

_ [ni,m_'l +_-i_ hi,moo! +ni,mo _ log...........
L" _- -_ __i=l

- _ log _7i ® n-i__m log ni,m
N* N_ N* N*

NN_-jL _-_H(X*)+ H(X*' Y*) ]

= N*

QoEo Do
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Extending the system to three variables, S = _W, X, Y_ and

partially collapsing over Y to get S' = IW, X, Z 1 , we obtain the

collapsing Lemma for Interactions. N* = N*(W*, X*, Y*) is the three-

dimensional analog of N*(X*, Y*), and the collapsing is understood to be

over Y*, i.e., over Ym-I and ym o

N*
Q(s)- Q(s')= _- Q(N*)

The interaction is lowered by the interaction in N* suitably

weighted.

Proof:

Q(s)= Q(w,x, Y) = _(w: x) - T(w :x)

Q(s')= Q(W,x, z) = _z(W: x) - T(w:x)

QCs)-QCs')= _y(w:x)-_z(W: x)

4-1 x) + Nm x)
= _ Tym_I(W : __ :Tyro(w

_m_l+Nm
N TZm_l(W : X)

N
m-i

N+N IN N
m m-i (W : X) +.m ,

Nm_l+Hm Tym-I Nm_l+N m TymCW:X)

- _ (w :x)]
Zm-1 J

= _ Q(w*, x*, Y*)
N

N

Q.E.D.
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Since Q(N_*)may_e eithe:r positive, negative_ or zero_ cohiapsing

does not necessarily lower interaction as it does entropy and tr_us_,

mls_ion o

The lemmafor entropy can be rewrfftten, using the identity

H(X, Y) o H(X_ Z/- F_(_) o .S..:/Z)o

in the form

Rx(z) : .

which makes evident the structural similarity between it a_d the

other lemmas; the form of each is

f original table after = N* f_subtable_table, N _ f collapsing, N _

with only the operator f differing between the !emmaso

As an example of partially c¢llapsing a two dimensicnal table_

we collapse N(W, X) below over its first two rows, which constitute

N__*(W*,X*), and obtain N[_(U_ X)o

Original table: N(W, X):

W

1

1 2 1

2 1 2

3 0 0

H(W_ X) = 2o689 bits

T(W : X) = 0°367 bits

N:12o



Collapsed subtabl_ N*(W*, X*):

X*

1 2 3 Hx.(W*) = 0.918 bits

1 1 2 1 T(W* : X*)= 0.074 bits

W*

2 2 i 2 N* = 9o

Table after collapsing:N'(U, X):

U

X

1 2

3 3 3

3 0 0

H(U, X) = 2.000 bits

T(U : X) = 0o311 bits

N' =12o

The entropies for the three tables are related by

H(w,x) - H(U,X) Hx.(W*)
N

2°689- 2.000 9= 1--2° 0.918 = 0.689

and the transmissions are related by

T(W • X) - TCu : X) =_ TCw* : X*)
• N

0°367 - 0o311 _ ° 0°074 = 0@056
= 12 °

Collapsing N over its first two rows lowers the entropy by 0°689 bits

and the transmission by 0°056 bits°

The three le_aas hold also when the subtable is collapsed over

more than two Y-valueso Suppose a table N(X_ Y) is to be partially

collapsed over its last k columns - the columns for YM+l,YM+2, ...,

YM+k _ to get N'(X, Z)o This could be done by collapsing the last two

columns (which we denote submatrix M (1) and whose entries sum to M(1)),

N(1) x
thus obtaining a new matrix __, l; YI); next collapsing the last two

32
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N (I-_ , _ _ get /_o_i,. ,columns of _ _J (ioe.o submatrix M_P!)to_ _J" _--2_ Y2 y° arod SO on_

finally getting .. _I' Yk_l). or _..N_!IX_._ Z_._ T(X z i) and T<%X.: Z)

would be related by

_(x: Y) - T(x : z)-- [T(X: _) T,__a:_l)] + [T,Xa_I) _(x2_-_2]

M(1)
= _f- T(M(I)

[ M(k-a)+°°° _' N

Consider the first two terms in the summation°

ooo + _Tt_k_2_,Yk_,2 J _ T(X _ Z

7

T(M (k_l
" -!)I °

They can be combined

and rewritten as

M(2) I M(1) 1
T(M(2)) +_ T(M (I))

or, since M (I) is the sum of the entries in the last Cwo columrts of N,

and M (2) is the s_m of the entries in the last three columns of N_

this quantity may be written as

_m+k+ _m+k-i+ _m+k-2[
_(M(2))L

+
_m+k* Nm+k-= . (I) l

m_M.....!
Nm+k + N+k=i + Nm+k_ 2.... _]

The Collapsing Lemma for Transmissions _ _s_a_e_ that this qaa_,tity i_

equal to

sum of the entries )
in the last three

columns of

N

X

I Transmission iL the 1
subm_trix comprising

the last three columns of
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An argument by induction leads to the conclusion that

T(x:Y) - _(x: z) =
sum of the entries _ /Transmission in_in the last k columns)

of N / |the submatrix |

comprising the |
N \last k coltmms /

\ of N /

or, more briefly,

T(x: Y)- T(x: z) = _* T(_*)
N

where N* is the subtable collapsed, with an arbitrary number of

columns°

Arguments identical in form to this one easily show that the

Collapsing Lemmas for Entropy and Interaction also hold when the

subtables coll&psed have an arbitrary number of columns.

9°2°2. Collapsing theorems

These lemmas can be further generalized to a system of many

variables, S = _ _, X2, o.°, XM, Y_,
for which the frequency table

= N(S) is to be partially collapsed over the variable Y, with the

table N(S')representing the resulting system S' = _XI, X 2, ooo, XM_ Z_o

We denote by N* the two®dimensional frequency table, with

< Xl, X2, ooo, XM>* the row_variable and Y* the column-variable,

which is to be collapsed by summing over Y*.

Theorem IIiol (Collapsing Theorem for Transmission_ CoToTo):

T(s) - T(s') =_-N*T(N*)

N* T(<XI_ X2 ' X >* : Y*)m_w

N o @o_ M
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Proof_

T(S) = m(._1-X2.°°°'XM) + m(<XL_X2,_ooo_XM>:¥)

T(S_)= m(Xl:Xe:°°°_xM)+ m(<xm,x2, o°o,XM-:Z)

_(s)- _:(s')= _(<x I, ooo,:%>: _)- T(_.x_ o°o_>, z)

N* m_ ,_XM>_ : y.)N "i,

Qo Eo D°

The last step follows directly from the Lemma for Tran,smissionso

The C oToTo says that if a table is partially coila;_sed over a

variable Y, the total transmission is lowered by the transmission

between Y and the rest of the variables, in the col!aFsed portion,

weighted appropriately°

From another point of view, the C oToTo says that viewing a

system through a many-.to-one mapping can never increase its apparent

constraint; if observer A views a system directly and observer B views

,_.°it via a mapping, the constraint between variables w._Lh is apparent

to A is always at least as large as the com_straint between the variables_'

i_ which is apparem.,t to B o

Theorem 111o2 '__eorem fo:r E_,:troo_v. Co _ E _"

N* ./y..,
H(S) - H(S') = _ H<X1, X2 ' o0o, XM>._. ,.

Proof:

H(S) = H(X:., X2, ooo_ _) + H<XI, oo-, XM_,(Y)

_(S') = _(Xl, ooo, XM) + _ ,:"°__,
<X I, oo., XM>

= _'Z _H(S) - H(S') H<Xl, o°°, XM>(Y) - _<Xl, oo°, XM>__j

N _

N <Xi., ooo, XM>*\Y_/
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The last step follows from the Lemma for Entropy.

The C.T.E. says that collapsing over part of Y lowers the

entropy by the entropy of Y conditional on all the other variables, in

the collapsed portion, weighted appropriately.

To obtain the Theorem for Interactions, we assume that

N* = N*(XI* , X2* , ..., XM* , Y*) is to be collapsed over part of Y*,

that is, over the y-values Ym+l' Ym+2' "''' Ym+k" We denote the (M + 1)-

variable interaction in N'by Q(N*).

Theorem III.3 (Collapsing Theorem for Interact!on _ C.T.Io):

Q(S)-QCs')= _ Q(N_*)
N

Proof:

Q(s)= Qy(Xl,x2, ...,xM) - Q(xI, x2, ...,xM)

Q(s')= Qz(xl,X2, ...,XM) - Q(xI, x2, ...,XM)

Q(S)-Q(S')--Qy(Xl, ...,x_)- Qz(Xl,...,XM)

m+k

Q(s)-Q(S')= ][
j=m+l

Qyj(XI'x2, ...,xM)

N _

- _-- QZm+l(X1, X2, o.., XM)

N* [ m+kj=m+l N. Qyj(xl,x2, ..°,xM)

- QZm+l(Xl'x2, "'" XM)]

_* Q(Xl. X2*, XM*,Y*)= N ' "'"

Q.E.D.



Since interactions may be negative, it is possible fear Q(S _) to be

larger than Q(S), in contrast to the situaticns for H and To T_is

means that when a system is viewed through 8,many,_,to-one marring , the

interaction terms for the image,_,sy_tem may be larger than those for the

original system, ioeo_ the system may appear to be more complex ¼i,n

some sense) than it really is,
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_o2o3o Remarks on the theorems

At this point it should be made clear that although some of the

proofs have been stated in terms of "last rows _', _'last columns 'z, etco

for notational reasons, and have therefore implied that the frequency

tables are finite, minor changes in the proofs would remove that

implication; the CoToTo_ CoToEo, and CoToIo apply also to nonfinite

tables@

Moreover, each of the theorems has a direct analog in terms of

continuous variables° For these, collapsing over certain values of a

variable Y becomes integration over an interval of Y, and N*/N becomes

the probability of the collapsed portion of the distribution° The

only place at which care is needed is in the distribution res_ting

from the collapsing; the probability which becomes concentrated in

the collapsing process must be dispersed in a sheet of finite thickness

to avoid a distribution which mixes delta "functions" with finite

functions, for information theory cannot handle that mixture°

These three theorems - CoToTo_ CoToE@, and CoToIo _ have

several corollaries, among them the following:
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Corollar[ III.i

a) T(xI :x2 : ...:xM)= T(xI :x2 : ...:XM_l)

+ T(_xl,x2, ...,xM_l> :xM)

b) H(xI,x2, ...,xM)= H(xI,x2, ...,xM_l)

+ H<xl'x2'...,xM_I>(x)

These equations, derived elsewhere in the literature, follow from the

C.ToT. and C.T.E. by collapsing over all values of XMO

The following corollary is a very important one for the decompo-

sition of system constraints, to be studied later. It says, for

example, that if X = < XI,X2,...,Xm > and Y = <YI,Y2,...,Yn> are

independent, then so are any X i and Yj.

Corollary 111o2

Let T(X I : X2 : ... : XM) = O, where each X i is a compound

variable < Xil , Xi2, ..., Xini > ° If Xfl designates a compound

variable whose components are some or all of the Xij's, then

T(xi :x_ : ...:x_)= 0°

Proof:

Suppose T(X I : X2 : .oo : XM) = O° The previous corollary

implies that

T(xI:x2:°.o:xM_l)= 0
and

T(<El,x2, .°°,_-i>: xM)= o.

From the identity T(X" < Y,Z >) - T(X : Y) + Ty(X : Z) it follows that

( xl, ,: x )= _(<xl,...,x >: x')T < "''' XM-I M M-I M

+T_(_xI,...,xM_I>:<xM-x_')



(where <XM- _ > is the c_ompound varigble _<_s_secomponents are the

XMj'S not in F__)o The left side of the equation is zero_ and therefore

_(_xI,.oo,xM_i_:_) =o.

Consequently T(X I : X2 : ooo XM®I: X_) = 0_ for

T(Xl:ooo:Xmi:x_) --T(xi_ooo:Xm_i) _-T(_Xi_ooo_XM_l>:x_)

=0 +0o

Similar analysis shows that

T(xI :x2 :ooo:xM_2:x_i:x_)=o

and so Ono

Qo Eo Do

The next corollary says, to put it picturesquely, that if an

observer of a system can sense only some of the values taken by each

variable, all other values registering only as "ouZside the range of

the instruments," then he can at least deduce from his observations

some minimum values for the entropy and transmission of the whole

system°

c_o_!H_j_

If N(S) is a frequency table and N* is any hyperrectangular

portion of it, then

N* T(N*)a) _(_) _ _-

• N* H(N*)b) H(N) _ _--

Proof:

Suppose a two-variable table N(X, Y) is collapsed over the

submatrix M*(X*, Y*) consisting of the last kI columns of N, the result

_9
J_
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being N'(X, Z). Next suppose M* is collapsed over its submatrix

N*(X**, Y**) consisting of the last k2 rows of M*, the result being

There fore,

The following two equations follow from the CoT°To:

T(N)- T(_) = _* T(_)
- N

T(_) - TCM)= _ TCN*)
M*

_* T(M) + _* _(_)- T(_) + _- _ _-

_* T(_)

last _ rows° The generalization to more than two variables is obvious

proving part (a).

(b) The following two equations follow from the C.T.E@:

H(X,Y) - H(X,Z) = _ [H(X*,Y*)- H(X*)

_(X*,_*)- H(W,_*)=_

Therefore

M*[H(w, +N*(H(x*,Y-) H(Y--))H(X,Y) = _(X,Z) + _- _ -

- H(x*)]

[_ _ _(x*_] +_" E_ _ _(_,.)]= (x,z)-_- _- (W,Y*)-

N* H(X___ y**)+_-

[ _* )] _* H(W)= _(Z)+ _z(X)- _- H(X* + F'

+_* [_W( N* ]M_

_* _(_)+_-



The first bracketed quantity is nonnegative, for HZ(X ) is the average

entropy is the columns of N _, obtained by a weighted summation of the

M*
individual column entropies; _H(X*) is the last term in the summation,

and the first quantity in brackets is thus a weighted sum (of non,_

negative quantities) over all but the last columrJo Therefore it is

nonnegativeo The second braeketed quantity is nonnegative for similar

reasons, and thus

N*
H(X, Y) = (a nonnegative quantity)+ _- H(N_)

proving part b for the two-variable case° The generalization to more

than two variables is simple°

Qo Eo Do

3°2°4° The e_uivalence of transmission and statistical dependence

Corollary IIIo4, which uses the next Lemma, shows that if a

two-_mensiomal table has zero tranSmisslon, its columns are proportional,

ioeo, that zero transmission implies statistical independence°

Lemma IIIo4

Let N be a 2-by-2 frequency table with T(N) = O° Then one

column of N is a non-negative multiple of the other°

Proof:

The distribution N may be typified by

i a

i b abc

(c _ O)

The second column is a multiple of the first if c = io

expressed in terms of a, b, and c as follows°

T(N) can be
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1 _ (I + a + b + abc) log (I + a + b + abc)T(N) = 1 + a + b + abc

+ i log i + a log a + b log b + abc log abc

- (i + a) log (i + a) - (i + b) log (i + b)

- a(l + bc) log a(1 + bc) - b(l + ac) log b(l + aC)}o

Assuming T(N) = O, expanding, rearranging, and cancelling, we obtain

(i + a + b +abc) log (i + a + b + abc) + abc log c

= (i + a) log (i + a) + (i + b) log (1 + b)

+ a(l + be) log (i + bc) + b(l +ac) log (i + ac)o

Calling the left side f(c) and the right g(c), this equation f(c) = g(c)

has a solution at c = l, Joe o, when the second column of N is a

multiple of the first. To show that there are no other finite solutions.

we note that

_c = ab _ 2 log2 e + log2(c + ac + bc + abc 2) }

_c = ab _ 2 log2 e + log2(1 + ac + bc + abc 2)} o

f(c) equals g(c) at c = l, and for c > l, f(c) has a steeper slope

fthan g(c); this implies that f(c) > g_c) for c > lo Similarly,

f(c) < g(c) for c < lo Therefore, c = 1 is the only finite solution

to f(c) = g(c), ioeo, to T(N) = Oo

Qo Eo Do

Corollary 111o4 (to C.ToTo):

Let N(X : Y) be a frequency table with m rows (of xi) and

n columns (of yj)o If T(N) = 0, then the columns of N are

all nonnegative multiples of N(X)o Thus zero transmission

implies statistical independence°
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If N has zero®rows or zero-columns, they may be permuted to the

bottom and the right, and columns may then be permuted to put a positive

element in the (1, l) position; this permuted form of N we call N'o

Clearly if the Corollary is true for N' it is true for No Suppose

= = 0o

Corollary III o3 says that the upper left 2_by_2 submatrix of

N-- (in fact, ar_ rectangular submatrix) has zero transmission° The

last Lamina says that the columns of this submatrix are proportional,

i oeo, that the elements in the second column are _2 times their row=

mates in the first column, with kl2 _ Oo The same argument shows that

in the submatrix of rows 2 and 3 and columns 1 and 2, the same propor-

tionality holds, and so on for all elements in columns 1 and 2; all

elements in column 2 are kl2 times their rowmates in column l o

Similarly, the elements in column 3 are k23 times their rowmates in

column 2, and so On o Finally, each of the columns is proportional to

the column-table N'(X) formed by collapsing N-- over its rOWSo

Qo Eo D°

Of course if N(X, Y) has proportional columns it also has

proportional rows; this condition is equivalent to statistical Indepen_

dence of X and Y o

It is well known that if X and Y are statistically independent

variables, T(X : Y) = Oo Corollary IIIo4 shows that the converse also

holds; that if T(X_I Y) = O, ..thenX and Y are statistically independent@

Thus transmission and statistical dependence are equivalent concepts

couched in different languages o



The argument easily generalizes to many variables; if T(S) = O,

then any subset of variables in S is independent of any other (disjoint)

subset.

If the frequency table on hand is the record of an actual

experiment, the transmission must of course be interpreted in light of

the vagaries of random sampling° To date an adequate test for the

significance level of T has not been produced.
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Can _enuinel_o_lex relationships be broken down?

If a system contains many variables interacting in a complex way,

of them simultaneously° When this happens, it is common for the human

to observe a few variables at a time and then try to piece together

the behavior of the whole from those observations° Such an attempt

sometimes succeeds and sometimes fails; we want to ask if there is any

theoretical limitation om such an attempt, specifically with regard to

the information_theoreti¢ quantities involved°

To put the question vividly: suppose an observer capable of

observing a2y N or fewer variables at a time is faced with a system of

N + 1 variables° Can he deduce the entropy, total transmission, or

highest_order interaction of the system? To approach the problem we

define a few terms°

By a ,_ex_.ression we will mean a single entropy, transmission,

or interaction term e_plicitly involving variables ® eogo, H(X),



45

Tz(<W _ X > : Y), %I(<XI._ X2> , X3_ X4)o An e_ression is a sum of

simple expressions°

Any simple expression is either identically zero (such as

Tx(X:Y)) or may be reduced to a _ro_e,_x_ession, in whioh no

variable appears explicitly in both subscript and argument_' for example,

the third example above is identically equal to QxI(X2_ X3_ X_), which

is proper° The order of a simple expression is zero if the expression

is identically zero; otherwise it is equal to the number of distinct

variables appearing explicitly in the expression, whether or not they

are considered to be components of compound variables o The examples

above have orders one, four, and four° The order of an expression is

the largest of the orders of its simple expressions o

It would be useful to find order_:,reducing identities _ identities

which would express a simple expression as a sum of lower-order

expressions, thereby allowing one to view a complex relationship as

merely a summation of simpler relations° This is indeed possible

through the device of an auxiliary equation; eogo, if < X,Y > = W

then H(X_ Y) --H(W)o However, barring the use of auxiliary equations,

no order-reducing identity can exist; relationships which genuinely

involve many variables can not be broken down°

Theorem III o4

Let f =_ g be an identity in which f is a simple expression

of finite order M and in Which g is an expression of order

K <_ M (and involving the same variables)° Then K = M, Joe o, g

contains a simple expression of order Mo
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Proof:

(a) We first prove the theorem when f is an unsubscripted

entropy, f = H(Xl, X2, ooo, XM), by supposing K < M and obtaining a

contradiction° We define two distributions on S = _X1, X2,

where each Xi has two values, 1 and 2o

The first, N(S), is defined by

= 2 [(X 1 + X2 + + XM) , rood 2]
nx1,x2,o°o,XM "'°

.oo, XM } '

and the second, N_N'(S),is defined by

n ! _ io

XI,X2,ooo,X M

For example, with M = 3 they are as follows:

N

X2

\

1

2

XI XI

i 2 1 2

2 0

0 2

X3 = i

i 1

I 1

i

X2

2

0 2

2 0

X3 = 2

1 ii I

To calculate any simple expression involving fewer than M variables

necessitates collapsing N and N_ over the variables omitted_ when thus

collapsed, N and N_, yield identical distributions and consequently

identical values for go The two d,_stributions yield different values

for f, however - an impossible ccndition _,f f _ g is an identityo

(b) !f f is any simple expression of order M, identities of

the following form exist8:



where h is an expression of order !e_s than Mo Thus f _ g may be

rewritten as

+ H(Xl_ _ ooo, XM)_ g _ ho

Part (a) showed that the expression on the right is of order M_ since

the order of h is less than M, the order of g m_t be Mo

Qo Eo Do

The theorem does not say that both sides of any identity

must have equ_l order, and in fact that is not true; for example,

It does mean that if a set of variables are actually related in a

holistic manner, the relation cannot be broken into a s_m of simpler

relations without something being losto While this is perfectly true

in general, in ma_y cases of practical interest a high,_order relation

can be broken down without losing _too much°" In sectlion 4°3 we _ill

study systems which lend themselves to such decompositions°
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3°4 Maximizing transmission between related variables

Introduction

An important problem is the following° Suppose X arid Y are

variables taking values ITom sets X = _ xi I 1 a i <.m_ and

X and Yo How shou/d the frequer:,cies i_ N_(x_ Y) be distributed exclusively



over the couples in R so that T(X : Y) is maximized? In other words,

how can the transmission be maximized with respect to the constraint R?

While this is an interesting problem in its own right, the

answer is really crucial for the understanding of channel capacity°

For as will be explained in the section on that topic, the description

of a channel linking supervariables X and Y is in fact the description

of a relation between X and Y, and the problem of maximizing TL(x : Y)

(i.e., finding the channel capacity) is the sameas the problem

considered here, only with limits involved_

It will be shownin the chapter on regulation that the transo

mission between the regulator, R, and the variable it is regulating

therefore also of importance to regulation, particularly when there is

a relation between R and Xo
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_o4olo The theorem

We start by denoting the matrix version of R by

= with
R__ [rij] m,n

f

ri°J =_ i if <xi._Yj_ is in R,

[0 otherwise o

We consider here only frequency matrices N(X,Y) = [nij ] m,n

with_____._R,ioeo, such that couples not in R occur with zero frequency°

Nothing is lost by restricting attemtion to cases in which m _ n and

R has no zero_rows or zero~columnso Since the argument involves

permutations of the rows and columns of Niand R, it will be assumed
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henceforth that when one matrix is permuted, the other is perm,ated in

the same way° We denote a permuted form of a matrix with primes.

For every R, there is at least one '_largest one_,to=one mapping '_

having the following properties:

i)_c R,

ii) _ has domain Z c X, w_here Z contains k elements and k <_.m,

iii) _ maps Z one®to-one onto a subset of Y,

iv) no other mapping exists _2ich obeys <i), <ii), and

(iii) but on a larger domain than _ o

The number k_ giving the number of elements in /_s domain, is dictated

by R and may be denoted k(R)o

The distribution No, with

I i if <xi, yj_ is in /_nij = 0 otherwise,

gives T(No) = log k(R)o It is always possible to make T(X : Y) = log k(R),

by assigning equal frequencies to the couples in _; however, by that

assignment it is possible that certain values of X and Y, not excluded

by R, would be assigned zero frequency° Consequently .H_X) and H(Y)

would be lower with the assignment No than with some other distributions,

and since

T(X : Y) = H_X) + H(Y) _ H_X_ Y)

there is good reason to suspect that some distribution other than No

will maximize the transmission°

The answer to the question F.osed above is given by:



5O

Theorem IIio

Suppose R is a subset of X x Y. Then for any N(X, Y)

compatible with R,

T(N) <_ log k(R)o

and thus NO above maximizes T(N)°

To state the theorem somewhat picturesquely, X and Y can

communicate best through a one®to-one mapping, even if the price of the

biuniqueness is that some of their values never get l_sedo It doesn't

pay, as far as transmission is concerned., to introduce more values if

their introduction brings in ambiguity°

Proof:

if k = m, the theorem is obviously true since 'iL_] _ log m for

any distribution N; the smaller dimension of a matrix limits the

transmission° If k _ m, we need the following Lemma:

Lemma III o5

If k < m, R may be permuted to a form R*, which in partitioned

form is

R_ =

I B I C

I E I F

'H IiG I _

and in which the square submatrix <A_ B_ D_ E) has an ascending diagonal

of k(R) l's and the submatrix (E; ....F_ H_ I h_is a zero matrix°

Proof of the Lemma_

The mapping 2* prescribes in a natural way a permutation of R

which displays an ascending diagonal of k(R) l's across the upper
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left corner of the resuiling matrix, these l_'s corresponding to

couples in the set _o Pictorially, R _ is then as shown in Figure 6,

with the diagonal line representing a string of l's.

The submatrix L must be a zero matrix_ because if there were a !

in _, row and column permutations could append it to the existing

diagonal° Henceforth we will show zero matrices by shading°

The rows which contain l's in J may be moved to the top of R'

and appropriate column permutations, always possible, may be performed

RT!to preserve the diagonal of l's intact° This done, is as shown in

Figure 7, where Jl has no zero rows° Now K2 must be a zero matrix,

since otherwise a column permutation could put a 1 in L while preserving

the diagonal°

Next, the columns which contain l_s in Klmay be moved to the

left and appropriate row permutations performed to preserve the diagonal°

This gives R" o_ , shown in Figure 8, in which _ has no zero columns

The process is now repeated with M, N, and P playing the parts

of 2, _ and _; P must be a zero matrix, for if it were not, a sequence

of column permutations could put a 1 in L while preserving the diagonal°

If there are no rows with l's in M, the Lemma is satisfied; if there

are such rows, they may be moved to the top of M and the diagonal may

be preserved through column permutations° Next the columns with l's

in N, if any, are moved to the left side of N while preserving the

diagonal, giving _,R(4) shown in Figure 9, where J1 and M1 have no zero

rows, and K_ and N_ have no zero columns°
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R ! :

I

i
I t

I

Figure .6°

Figure '7°
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R Ill =

J,

,/F-T-T;-

Figure 8o

(4)
R

i N_3 _

Fig'are 9o
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R' must endThis process, iteratively applied to any matrix m,

either by disclosing a I in a position incompatible with the hypothesis

that the diagonal is maximally long, or else by completion of a rectangle

of zeroes which "touches" the diagonal° This proves the Lemmao

Note that the process described amounts to an effective procedure

for finding the largest one-to-one mapping contained in R (or one of

them, if there are more than one).

Returning to the proof of the theorem, we assume R has been

permuted to the standard form R* and that the distribution N, unspeci-

fied as yet, has been similarly permuted (so that it too has the large

rectangle of zeroes).

N_ --
M

 i_!i

where

i

lh
I

I..... t

l

[m I

=0o

Suppose now that N* is partially collapsed by adding together

the columns in the right-hand submatrices, obtaining Na:

NIl

o

o

where 0 i has one column°

We recall that permutations do n_alter transmission; therefore

T(N*) = T(N). The C.T.To (theorem IIIol) consequently states that



= + T 0 I 0
-I-_- - -

0

I
N T N12=

i

I 0

!
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Suppose we are given an arbitrary Na and we set about to maximize T(N)

by adjusting the frequencies in N12 and N13o The row sum_ are fixed

(by M1, which is in Na)o Recall that B, the submatrix of R* corresponding

to N12 , has an ascending diagonal of l_s; hence, the row totals for

(N12 , N13 ) can be assigned to the diagonal positions in Nl2o That

assignment maximizes T(N) without assigning any frequency to N13o If

N13 is not needed for an arbitrary Na_ it is not needed for the Na

which maximizes T(N), ioeo, there is an N_which maximizes T(N) and for

which N13 = O o

The last conclusion is the heart of the proof, for maximizing

T(N) when N is

n

I I 0-

.... I I....

N21 i o , O
_-I I

JN_I I 0 I 0

-- I I

is easily accomplished by setting

nij :(I if nij is on the ascenling diagonal,

ioeo, if i + j = i + k(R),

0 otherwise,

yielding T(N) = log k(R)o

Qo Eo Do



3.4°2° An attempt to _eneralize the theorem

Let R be a system relation on S =_ X1, X2, ooo, Xi, °°o, XM_ o

Then R contains a largest subset /_ such that (i) for every X i in S,

the projection mapping pr i maps 7_ one-to®one onto a subset of X i, and

(ii) no other mapping satisfies (i) and has more elements than _o

Letting k(R) denote the number of elements in /., it is tempting to

conjecture, as an M-dimensional generalization of the above theorem,

that for any N(S) compatible with R,

<_(M-l)logk(R)o

However, the generalization does-not always hold for M > 2o For

example with R = S = {X, Y, Z} the following N(X, Y_ Z) has T(N) = 3,
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Y

X X

1234 1234

0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

Y

1

2

3

0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

Z =l Z =2

After introducing some new notations to deal with dynamic

variables, we will apply the results of this section to the problem of

finding the channel capacity for networks of automata°
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Introduction

We normally think of a dynamic variable, eogo, X(t), as one

which changes in time. A seman_ic and notational conf_Ion res_d.ts

• _ _ ioeo, thewhen we wish to consider both {i) the variable Xtto; ,

variable whose values are the possible values of X at the specific

time to (but with t o arbitrary), and (2) the variaole X(t)_ ioeo, the

variable whose values are the possible trajectcries X cantake over an

extended time interval. To distinguish the instantaneous _ from the

trajeCtory-variables, we call the first simply a variable and the

second a super®variableo TT_e two ar_ of cc_rse related, and in this

section we will explore that relation as regards the information

quantities involved°

In later sections on charmel capacity, information transfer,

and regulation we shall rely heavily on the concepts of this chapter.

Definitions for limi_j___ntiti._

a o ....It

composed of variables all having the same statistical distribution, or

is composed of groups of variables2 all within each group having the

same distribution° A stationary' regular Markov sequence

X i®l X i xi+l
ooo, , _ , ooo

where the superscripts denote successive instants in time, and the

states in a chain of identical _'S,
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where the subscripts denote successive positions in the chain, are

one-dimensional examples° For such a system, certain limit®expressions

are meaningful and have profound interpretations in the study of com-

plex systems° We will denote these limit_expressions with a superscript

L° At the start, a word about notation is in order° We will use

subscripts in this section and elsewhere to distinguish variables or

super-variables which are being thought of as different in nature; we

will use superscripts, on the other hand, as indices for time° For,

example, XI and X2 might be a set of temperature-values and a set of

humidity-values respectively; the variable "temperature at time _ "

would be denoted XI and the variable "humidity at time 7" would be

d_not_d Y7 _
........ 2 _

To simplify notation, we define the sue_riable X or the

s-variable X as follows:

-- XI X2 XiX = < , , o-o, _ oo°

corresponds to an indefinitely long strip of a protocol,

time: i 2 3 4 5 ooo i ....

m

and one value of X is one possible way to fill in the protocol°

course X T may have components, say if X_ K U_, V_= _ ; then

Of

m

X = <U,V > is a supervariable with components°

We define a super=system S as an ordered set of super_variables:

ooo,
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, w.t_ compo_ent? osupervariables, from <X 1 X2> _ a supervariable _ _

The latter corresponds to a protocol of two strips,

whereas the former corresponds to a set of protocols:

1 _ 3 _ l 2 3 x4

Thus the prefix super- or s,_ and the overbar imply varlab_e_ which are

really infinite vector_variabieso We will use the term "variable",

henceforth, to include both ordinary,_ _o,d super_variables, using the

prefix only when a super_variable is expressly implied; likewise the

term "system" will include both types, so that a super_system is also

a system°

We denote the limit®ent_ or L_,entropy of _ by HL(x)

and define it by

= _ X2 Xn )HL(_) lim 1 H(X I, , ooo
n_m n

if the limit exists° The n-th term in the sequence is what Shannon 5

calls GNO Similarly, the limit-entropy of a super=system

S = , X2, ooo, is defined as

(D = n÷® n H , ooo,

lira 1 H(<SI_ , <$2> _ ooo_ <sn>)o
n-_,w n

The notation is slightly redundant in that L_entropies are

defined only for s=variables, but this redundancy will. be kept, for



emphasis. Continuing the definitions in their general version, we

define the L-entropy of SA conditional on Sb by

And so on. The definitions for all simple limit expressions, except

for HL(x) and HL(s) which are primary expressions, are obtained from

the analogous non-limit definitions by superscripting with L, and

overlining all variableso For example, the L-transmission over S =

, X2, o.° is defined by

By a simple limit-expression we will mean a single L-entropy,

L-transmi_W_on, or L-interaction term explicitly involving s-variables,

e°g., HL(x), T_(W:Y)o A limit-expression is a sum of simple limit-

expressions°

_°2o The relation between non-limit identities and limit-identities

6O

One of the post powerful theorems in information theory is the

one which states that an identity in simple expressions remains an

identity if the same subscript is added to each simple expression9o

The reader might be tempted to suppose that an identity in

simple non-limit expressions remains an identity if each term is

superscriptedwith L and all variables are overlinedo Since the

definitions for all L-.transmlssions and L-.interactions are related to

the non®limit definitions by precisely tLbat operation, the supposition



is clearly true for identities not involving entropies° !f entropies

are involved, however, the supposition is by no means obviously true,

for a llmlt-ldentity has on its two _ides the limits of two distinct

sequences, and to establish the identity these limits mast be shown

to be equal°

Theorem IIIo6

An identity in simple expressions remains an identity if

superscript L is added to each simple expression in it and every

variable is overlinedo That is, every non,_limit identity implies

a corresponding limit-identityo

Proof:

Let f _ g be an identity in non-limit expressions_ involving

variables XI, X2, ooo, XM:

f(XI, ½, °oo, XM)- g(Xl, X2_ ooo_ XM)o

Substituting <X_l, _l, °°°, X_l>, for X1, <X l, ooo, _> for X2, etco,

and <_, _, ooo, _> for XM, another identity is obtained:

( _l n> <_ _>)g(<X 1 _Xlf < ,ooo,X I ,ooo, ,ooo, -_- _ooo >_ooo_

The identity is preserved if both sides are divided by n; therefore,

for all n _ i we have

n f _ '°°°' >'°°°'< '°°°_ _"

Our goal is to show that _(XI_X2_

(g < _ooo, > _ooo,

ooo.._)andg_(xI _,x2_ooo_) are
identically equal; each of these limit._expressions represents the limit

61
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of a sequence, and to show them equal we must show that the two sequences

converge to the same limit. That they do follows from the fact that the

two sequences are equal in every term, and that is the case since in

the last identity above, the expression on the left is just the n-th

term in the sequence whose limit is fL(Xl, %' "''' _) while the

expression on the right is the n-th term in the sequence whose limit

is %, ...,

Q.E.D.

Deeper exploration of limit-expresslons and their profound

importance for complex systems will be deferred to a later section;

here it will suffice to state that _(X) is the information (per step)

c "_ T .....

carried in the sequence _X_ and T-(X : Y) is a measure of the linkage

between the sequences [X_ and {YI' per step° When X is the input

and _ is the output of an information channel, TL(x : _) is the

amount of information usually thought of as "transferred through"

the channel, and it is bounded by the channel capacity. We will

take up the subject of channel capacity in the following section.

_.6o Channel capacity; constraint capacity, and the capacity of

automata

Introduction

The notion of channel capacity is one of the most fundamental

in information theory. It applies, classically, to an "input-output"

system and is the limit on how much information can be pushed through
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it per unit time° We will show here that the notion need not be

restricted to "input-output" systems nor to systems with only two

"terminals;" the generalized notion will be referred to as constraint

capacity, to eliminate the connotation of unidirectional flow that

the word "channel" carries° Constraint capacity will reappear in a

later chapter, when we discuss the decomposition of constraints in a

dynamic system, as an upper bound for the linkage between two or

several dynamic variables in a dynamic system°

In later chapters on regulation in dynamic systems, it will

become apparent that the channel capacity of a regulator is of

fundamental importance for its capacity as a regulator° Since a

regulator is not always describable as either a machine with input

or a mapper alone but can usually be described as an automaton, the

calculation of the capacity of automata is of prime interest to this

study, and a method is presented in this chapter by which that calcu-

lation can be made° .The method allows calculation of the capacity

for any network of interconnected automata, in fact, and it produces

as a by-product the information necessary to construct a source matched

to the network so as to realize the maximum information flowo

3o6olo Channel capacity and constraint capacity

We consider a super-system S = X,Y in which _ is the input

s-variable for a channel and Y is the output s-variable:

- 1 L -X _ Channel > Y
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A particular value of X = < XI, X2, ...> is a particular sequence

of input symbols to the channel, X i being the input symbol at time i.

The channel specification is in fact specification of a relation R in

the product set X x Y, and the channel capacity is defined by

C = max _ TL(x : Y) I

where the maximum (or least upper bound, if there is no maximum) is

over the various distributions N(_, _) compatible with R.

For many channels of practical interest, the order of maximiza-

tion and limit-taking may be inverted, giving

C lira i [max T(<XI X2 Xn yl _ yn>) ]n@m n

The maximization is that considered in section 3.4, namely maximizing

transmission under constraint by a relation°

The relation specified by a deterministic input-output channel

is normally a mapping from _ (and perhaps the channel's initial state)

-into Y; for such a channel, = 0 and therefore

C = max _HL(_)_ o

The characterization of the channel as "input-output" derives

from the relation R, not from _ or _° By considering arbitrary relations

on arbitrarily many super-variables, we can generalize C to the notion

of "constraint capacity" of an object. Supposing there is a super-

system _ = _ XI' X2' "''' _M_' and the object specifies a relation R;

R C X I x X 2 x ..o x XM,

the constraint capacity of the object is denoted C and defined by

with the maximum (or i. u. b.) taken over all the possible distributions

N_(S) compatible with R.



It may strike the reader as presumptous to speak of a relation

in a set of infinite size. In practice, of course, R is usually a

highly iterated version of a very simple relation on a finite set.

For example, if _ and _ are the input and state supervariables for a

MWIwith mapping f : Xi x yi __yi+l then

<X, Y--_isin R<=_for every i _ l, <X i, yi yi+l> is in f,

where f is viewed as a relation in (Xi x yi) x yi+lo R is thus shown

to be an expanded version of the three-variable relation fo

The treatment thus far has not differentiated between "noisy"

and "noiseless" channels. That topic will be taken up in section 3.6.4.

3.6.2. An example of constraint capacit_

As an example of constraint capacity in more than two dimensions

we define a relation R on _ = {X, Y, Z}, where each of(variables ),

the s-variables takes, at each step, one of the values i, 2, or 3:

<X, Y, Z > £ R <=_for every i _ i, X i, yi and Z i
I

all take different values, and

yi > Z i if i is even, yi < Z i if i

is odd.

This is equivalent to

< X, Y, Z > _ R4=> if i is even, <X i, yi ", Z1> is

<2, 3, l•, <3, 2, l_, or <l, 3, 2 >;

if i is odd, <X i, yi Z i > is

<3, i, 2 •, <I, 2, 3•, or <2, i, 3 >.

The distribution N(X i, yi, zi), with

n3,2,1 = nl,3, 2 = l; others zero
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when i is even, and

n3,1, 2 = nl,2, 3 = i; others zero

when i is odd, maximizes both T(X i : _) and T(<X i, _>: Z i); there-

fore it maximizes T(X i : yi : zi), at 2 bits° The extension of that

distribution maximizes TL(_ : _ : Z ) at 2 bits/unit time, so the

constraint capacity associated with R is 2 bits/unit time@ The relation

represents a real constraint, since with no constraint (R = _), the

constraint capacity would be log 9 = 3o17 bits/unit time@

_.6._. Channel capacit [ of Moore automata

_.6._.i. The theorem

Viewing the object (the "channel") as a set relation has led to

the solution of an outstanding problem - that of finding the channel

capacity of an arbitrarily connected network of MWI's, mappers, and

Moore automata.

Consider a finite network of arbitrarily interconnected Moore

automata, as in Figure 10 where the circles represent automata and an

arrow from one circle to another indicates that the output symbols

from the first automaton are input symbols to the second° Further

suppose that the network acts as a communication channel from a Source

to a Receiver, the "input automaton" accepting only Source symbols as

input and the Receiver observing the output symbols of the "output

automaton" only. This section will provide a procedure for evaluation

of the channel capacity of such a network and of its component automata.

There is no loss of generality in assuming that only one

automaton accepts inputs from outside of the network, that there is
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only one Source, that the input automaton accepts only Source symbols

as input, or that the Receiver observes only one automaton; all other

cases may be reduced to this one by nominally combining elements,

recoding the descriptions of elements, or introducing one "delay

automaton." None of these modifications affects the channel capacity

of the network.

The network itself may be viewed as a Moore automaton, of course,

so that the problem of finding the capacity of a network reduces to

that of finding the capacity of a single automaton. On the other hand,

each arrow in Figure lO can be thought of as a unidirectional channel

and may be labeled with its channel capacity, which is the capacity of

the automaton from which the arrow emanates° One upper bound for the

network capacity 10 is the minimum value among all simple cut sets,

where the cut sets separate the "input automaton" from the Receiver and

where the value of a cut set is the sum of the capacities of branches

in the set (but only counting branches directed from the input toward

the receiver). Thus the calculation of this upper bound for network

capacity also requires the calculation of capacities of single automata,

to which we now turn. The method, in essence, is an application of

theorem III.5, setting the input and output sequences in biunique

correspondence°

We Consider a Moore automaton A with a finite input alphabet

_Xl, x2, ooo, Xk] =X, a finite state set _Sl, s2, ..o, Sm_ = S, a

finite output set _Yl, Y2, °'', Yn_ = Y, a state function f: X x S -_S,

and an output function g: S -_Yo See Figure llo



69

A

----_V

Figure iio



The state-transition matrix A =

_ij = _ i if _x E X S oto

[ 0 otherwise

and the related matrices Ap = [_ijp_m,m, 1 _ p n_ by

I_ ij if g(si) = yp_iJp =
0 otherwise

_ij ]m,m for A is defined by

f(x, si) = sj

7O

Row si of A indicates with a i every state-transition si-_s j allowed

by f, and _p, 1 _ p _ n, copies those rows of AA representing states

which g maps tO ypo

For a discrete channel such as A,

P

iioi[C = T*© _ max T(<X I, X2_ °°°' XT>: <YI' Y2' °°'' YT > °

There is at least one sequence _Xl, X2, ooo7 XT_ for each sequence

Y1, Y2, °°', YT_, and from Theorem III o5 it follows that

Cy = limT*_

where Ny(T) is the number of output-sequences of length T allowed by

the input andthe set relation prescribed by Ao Shannon gives the

expression above as the definition of C for a discrete channel5o

We denote by Ns(T ) the number of state-sequences of length T;

Ns(T ) and Ny(T) yield capacities Cs and Cy respectively° Cy is the

capacity of Ao

Cs may be calculated from _by a method due to Shannon; he

shows 5 that if Arepresents the allowed state-transitions, _ the

identity matrix, and W o the largest real root of the determinantal

equation



det _ A - WI ] =O_

then Cs is given by

Cs _ log2Woo

If g is a one®to®onemapping, each state-sequence yields exactly

one output-sequence; in such a case Ns(T) equals _y(T) for all T,

Cs = Cy, and the capacity of A maybe calculated directly from _o If

g is not one-to-one the convergence introduced by g will force Ny(T)

to be smaller than Ns(T)o To find Cy in such a case we systemmatically

A", R",substitute new automata A', etco, with their relations R', etco

in _ x _ being each a proper subset of its predecessor, until an

automaton A* is found for which

lim 1 log Ns.(T ) lim 1 log o

That is, Cs. = CF°

The sequence of automata A, A', A", .oo, A* can be formed in such a way

that the state-transitions become increasingly constrained while the

output_transitions do not, so that Cy may be found from the state-

transition matrix for A*, which we will call A *°

We define a _ P as a set containing two or more

state-subsequences of the form

{Si, S, S/3, ooo, Si+n_ (n _ 2)

all compatible with A, all identical in first and last states, and

all of which are mapped by g into the same output_subsequenceo

If a parallel set P exists, an observer seeing only the corres-

ponding outputmsubsequence is unable to determine which state_subsequence
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in P has caused it, but the observer's uncertainty can be minimized

as follows. Given A, one can generate all the state-sequences of

length T allowed by A__. If a .parallel set P is found, the constraints

on state-transitions can be increased, eliminating members of P until

exactly one sequence in P remains allowed; this is always possible, and

it amounts to the substitution of a new automaton A' capable of the

same number of output sequences as A but a smaller number of state-

sequences. One can next generate all the state-sequences of length T

allowed for A' and so on. Reiteration of this process will eliminate

all parallel sets of length T and will lead to a collection of no more

m2Ny(T) state-sequences, since for each first-state, last-state pairthan

/' ....... _% .... ., .......... _ J....,..... .L___.,_ ......... t-.._
_OT WlIlCDI _13ere _r_ _ I11OS_ m ] (_LI Uu_rv_x u_ u_ U_UlJ_U--_tlt_LA_=_ \U_

which there are 5(T))would correctly assign one state-sequence. More-

the collection will contain no fewer than Ny(T) sequences, sinceover,

the elimination process always leaves, for each allowed output-sequence

of A, one state-sequence capable of generating it. This process, then

provides a sequence of numbers, No(T) , which give a capacity Co"

1 log No(T).Co = T+_

From the inequality

2

Ny(T) _ No(T ) _ m Ny(T) for all T $ 1

it follows that Cy = Coo Since Co may be found from A__* by Shannon's

method, the foregoing Justifies the following theorem:

Theorem III o7

Let W o be the largest real root of the determinantal

det [ A__* - WI_ ] = 0o Then the capacity of A isequation

log Wo.



A* embodies the original state-transition constraints and the ones

introduced by the elimination procedure, at the point where no further

elimination is necessary°

This calls for several comments° First, unless the transition

eliminated is a first,_order one (eogo, sI --_ s5) the states must be

recoded and the transition matrix redrawn before the elimination can be

made° For example, elimination of a third_oorder transition (eogo,

<s 2, s4, sI >-_s5) requires that the states be recoded into triples

(e@go, (s2, s4, Sl) = s241) and that the corresponding matrix be con-

structed before elimination of the transition (eogo, s241-_s415)o

Corresponding changes in the domain and range of g mu_t be made° The

effect of this relabeling is to increase the size of the matrix at each

step unless certain simplifications are possible; in the Example, some

common simplifications will be illustrated°

Second, if at the Mth iteration of theprocess the matrix, call

it A_, has become too large to make continuation feasible, an

approximation to Co can be obtained by using A_in place of A__;

such an approximation, CM, satisfies the inequalities

Cy _ CM _ CM._l _ Cs (M _ i)o

Finally, there exists a procedure, given below, for deciding

whether or not further eliminations are necessary, ioeo, whether or not

We proceed next to outline the process in terms of matrix

operations°
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_.6o3@ 2. Calculation of capacity

Sets X, S, and Y and functions f and g are presumed given. As

the iterations proceed to substitute new automata for the original,

S, Y, f, and g will change accordingly° To simplify the notation we

will assume, however, that S has m elements and Y has n (m >i, n > i)

at the start of each iteration, signaled by a pass through Step i, and

wewill call the transition matrixA_throughouto

Preliminar[

If S can be partitioned into disjoint subsets such that no

state in any subset has any transition to any state in another subset,

then A is a merely nominal conjunction of smaller automata, one of

---2-1-

W_AAUU iS selected uy cno_c_ ox _ne xnxuxa± state° wne capacity of A is

then the largest of the capacities for the smaller automata.

Transient states, which cannot be reached from any other state,

as well as persistent states, which cannot lead to any state other than

themselves, may be dropped from S without affecting the capacity° If

S is empty after all such states have been dropped, the automaton has

a capacity of zero.

Construct A and Ap: i _ p _ n as previously defined.

Observe the _matrices to see if there exists any column of

any _p containing more than a single lo If so, proceed to Step 2° If

not, no further eliminations are necessary, as the comments for Step 2

will explain; proceed to Step 5°
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Comment on Ste__22

The successive postmuS:tiplications of a row vectcr E_j (with

eli equal to 1 and the other elements all zero) by A, Ap2 , Ap3 ,

oo, ApT corresponds to the constructicn of state-sequences starting

with sj and pas_ing through states in the sets g-i C_yp_J,_ g_l(yp3_ _,

ooo, g-1 (YPT)° For Ej_ indicates by its nonzero components the set of

states reached in one step from sj, Ej A Ap2 indicates those states

reached in two steps from sj via some s in g-l(yp2) , and so Ono If a

vector component equal to K _ 1 results from the multiplication, there

must exist a related parallel set containing K sequences° Conversely, if

a parallel set never occurs, it must be the case that no vectors ever

arise from the multiplications which, when multiplied by any _, yield

a vector component greater than lo Clearly, if no column of_

contains more than a single l, multiplication of a vector of zeroes and

ones by A_ can give rise only to components of zero and one°

Define T1, a set of row vectors, as follows:

T1 = VI, V2, ooo, where Vi = kil ' oo,

Start the following substeps with N = l o

Generate the set of vectors QN = _V_ A _ 1 _ p _ n, V i

For N = l, these vectors are simply the rows of the matrices

TNI o

^Al' AA 2, .°o, AAno
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If any vector in QNhaS a component greater than i, go to Step 3o If

none has, go to Step 2b.

Step 2b.

Form the set TN+ 1 = TN U QNO If TN+ 1 = TN, go to Step 5o If

TN+ 1 _ TN, increase N by 1 and return to Step 2ao

Comment'on Step 3

Entry to Step 3 results from the production of at least one

vector in QN containing, in say its jth column, a number K greater than

l° The vector, produced on the Nth pass through Step 2a, corresponds to

the existence of a parallel set P containing K distinct state®sequences,

each of length N + 2 and each endingwith Sjo All but one of the

sequences in P must be eliminated° To every component greater than l,

of every vector in QN, there corresponds such a parallel set requiring

eliminations°

Step3.

Find the parallel sets by retracing the steps of multiplication

which led to the vectors in question and by consulting the function go

Once the sets are known, all but one member in each set must be declared

examples of illegitimate transitions (of order N + 1)o Rewrite the

transition matrix to show the previously allowed transitions of order

N + 1 and modify it (by substituting zeroes for the ones corresponding

to the newly illegal transitions) to form the state_transitionmatrix_

for Step 4o S, Y, f, and g must be modified to reflect the relabeling

of states described earlier°



for all To

Removetransient, persistent, and i_olated states from S as

follows° If there exists a state sk in S such that row sk or column sk

in _contains only zeroes, except perhaps on the main diagcnal_ remove

sk from S and revise _accordinglyo Continue removing states and

revising _ until every row and columr_contains at least one off-diag-

onal lo

From the resulting _and g, construct the _matrices and

return to Step lo

Comment on Step_

Entry to Step 5 indicates that the state,_transitions_ as

represented by the current _, are sufficiently constrained as to

guarantee that

Thus the current A is A*o

Solve the equation

det [ AmX" - _ ] ;0

for its largest real, root Wo; calculate C = log2W o = capacity of Ao

The state-transition probabilities which maximize the output

entropy at C bits per second are given by

Prob (s(t + I) = sjl s(t) = si) = Pij = Bi W

in which B is the eigenvector associated with the eigenvalue W o in the

equation
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This result is from Shannon 5, and it leads easily to the construction

of a source which is optimal for the channel.
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$.6.3. $. An example

This example will illustrate how the process typically proceeds

and what simplifications are often possible. Let A be an automaton

described by sets X = _Xl, x2, x3_ , S = {s I, s2, s3, s4, s5, s6_,

Y = l_yl' Y2, Y3 _ and functions f and g given in Table Io

Next - state function Output function

f g

ST
J_

s2

s3

s4

s5

s6

x1

S_,
,4

s3

s1

s2

s5

sI

x2 x3

S_

D

s2

s2

sB

s5

s4

mr-

S 3

s3

s1

s5

s4

S _ Y_
j. j_

s2 Y2

s3 Y2

s4 Yl

s5 Y3

s6 Y3

TABLE I o- State and output functions of A

Preliminary. State s6 cannot be entered from any s_S, so it can be

dropped; with s6 gone, s4 cannot be entered, so it can be

dropped° State s5 cannot be abandoned once entered, so it can

be dropped; note that this means that the couple (Sl, x3) must

never be allowed to arise° With S = _ sI, s2, s3_ we can

proceed°



Step i°

Step 2o

0 I i C I i 0 0

A = o i l AI = o o A 2 = 1

1 1 1 0 0 1

A 2 contains columns with more than one io

AA 2 --

[ili]JillI[°°°11 x 0 0 = 0 0 0

1 0 0 0 1 1

1 x 0 1 1 = 1 2 2

1 1 1 1 1 2 2
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The rows of A A 1 and AA 2 are the vectors in QI o

Ste_. To each 2 in the matrix product there corresponds a parallel

set containing two sequences, and if the 2 is in the (i, j)

position of AAp, the sequences must start with si, pass through

-I t

an s in g _y_), and end with sj, since

The parallel sets, subscripted with i and j, are as follows:

P12= {<_I,S2_2),(Sl,S3,S2)}

'_3= {(Sl'S2'S3)'(Sl'S3'S3)}

'22 _ { (s2,s2,s2),(_2_3,s2)}

P23= {%'s2'_3)' (_2'_3's3)}

1_32-- {(_3,s2,s2),(s3,_3,s2) }

P33° { %'s2'_3)' (_3's3"3)}-



The second order transition matrix, after relabeling states

as indicated on page 73 of the text, is given in tabular

form below.

s(t + i)

8o

s(t)

s31

s12

s22

s32

s 13

s__

s33

s31 Sl2 s22 s32 Sl 3 s23 s33

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 1 0 0 1 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

1 0 0 1 0 0 ]

I 0 0 i 0 0 1

The elimination of a sequence from a parallel set P is accom-

plished by substituting a zero for the corresponding 1 in this

matrix. The sequence in P to be eliminated may be selected

arbitrarily, although a good choice will minimize the subsequent

computations. We choose in this Example to eliminate the

following sequences:

Sl,S3,S2; Sl,S3,S3; s2,s3,s 2

s2,s2,s3; s3,s3,s2; s3,s2,s 3

(this is in fact not the best choice). The result is given

below.
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s(t)

s31

s12

s22

s32

si3

s23

s33

s31 s12 s22 s32 Sl3 s23 s33

0 i 0

o o l

o o I

o i 0 0

o o i o

0 o 0 0

0 0 o o

o o o o

o o 0 I,

0 o o I

o o 1

1 o 0

1 o 0

1 o o

s -- s31,s12,s22,s32, 13, 23,s33 o

Step 4o Observation of column s32 and row s22 indicates that s32 and

s22 can be eliminated from So Frequently the second-order

transition matrix at this point is merely an expanded version

of a first-order matrix, allowing a further simplification,

but in this Example that is not the case° Table II gives

the matrix, in tabular form, resulting from the foregoing

eliminations and also redefines the output function g on the

relabeled states°
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State

Transitions

s(t)

s31

s12

Sl3

s23

s33

s(t + i)

s31 s12 Sl3 s23 s33

0 i i 0 0

0 0 0 i 0

i 0 0 0 0

i 0 0 0 i

i 0 0 0 i

Output function

g

s31

s12

Sl3

s23

s33

Y21

YI2

YI2

Y22

Y22

TABLE II. State transitions and output functions after simplification

S = _ s_ ,s_o,s_o,soo,soo_.

B

-0 i i 0 0-

0 0 0 i 0

i 0 0 0 0

i 0 0 0 i

1 0 0 0 1

A
12

0 0 0 0 0

0 0 0 i 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A
21

-0 i i 0 0-

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A

22

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 i

i 0 0 0 i



With these matrices we return to c_tep Io

St_e_p__ A A22 contains columns with more than one io

•_:[v_ _, v_,v_,_]_ v__-[o _ _ o o],
v_-[o o o _ o],_: [_ o o o o], _

2ao 1 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

AA21 =

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 1 1 0 0
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2bo

2_o

2b°

A A22 =

"0 0 0 0 0-

1 0 0 0 1

0 0 0 0 0

1 0 0 0 1

1 0 0 0 1

The rows of these matrices are the vectors in Q1 o

Q_=[v_v4,v6,vT]_t__v__ _v4_ _bove_ _t_
v6o[_ o o _ o], _vT=[o o o o o]o

T3 = T2 = T2 U 0"2



Step 5. The equation det [ A -W-l_] = O,

-W 1 1 0 0

0 -W 0 1 0

1 0 -W 0 0

1 0 0 -W 1

1 0 0 0 I-W

= 0

has Wo = 1.618 as its largest real solution.

C = log 1.618 = 0°693 bits/unit time.

The eigenvector B is easily calculated to be

-0.618-

0.618

i.000

z.oooj

The second-order state transition probabilities are given

below°

Pij

s31

s12

s(t) Sl3

s23

s33

s(t + i)

s31 s12 Sl3 s23 s33

0.000 0.618 0°382 0o000 0.000

0o000 0o000 0.000 io000 0°000

1.000 0.000 0.000 0.000 0.000

0.382 0.000 0o000 0.000 0.618

0.382 0.000 0.000 0o000 0.618
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A source to realize these transition probabilities can be

I +_ .constructed by enabling it to follow the states of A _re['_rnlng

to the original single-subscript notation, in which the set

of states is S = {Sl, s2, s3_ ), and to emit symbols as

follows.

If preceeding state and

present state of A are

s(t- l) s(t)

Source emits xl, x2, xB
with these prcbabiliti_s:

xI x2 x3

s3 sI

sI s2

S1 S3

s2 s3

s3 s3

0.618 0.382 0°000

1.000 0.000 0.000

Io000 0°000 0°000

0.382 0o000 0o618

0.382 0.000 0o618

With this source, the output sequence is a Markov process

and the transition probabilities are as follows:

y(t + l)

y(t)

Yl

Yl 0.000

Y2 Oo382

Y2

1.000

0.618

The entropy of the sequence is 0.693 bits/unit time.

Before leaving the subject of automata capacity, we will make

one final observation which has been deferred to avoid confusing the

This is that when A'has been found, one need not solve thereader.

equation

det [ A=_*- Wl ] = 0
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for its largest real root but may solve instead the simpler equation

det [ g(A*)- WI_ ] = 0

for its largest real root; the two roots will be the same. In the

second equation, g(A__*) is the matrix of allowable output transitions,

and it may be deduced directly from Am* and g. For the example, this

is illustrated graphically in Figure 12. Arrows indicate allowed

transitions in Am*, above, and in g(A__*), below. The output transition

matrix in tabular form is:

y_-_,_-±)

Y21

YI2

Y22

y(t-l, t)

Y21 YI2 Y22

O 1 O

i 0 i

1 0 1

The determinantal equation det [g(A*) - WI_]= O,

0

i =0,

l-W

-W i

i -W

i 0

has Wo = 1.618 as its largest real solution, and log W o = 0.693 as

before.

The reason this simplification is possible is that when the

output sequence carries just as much information as the state sequence,

one gains nothing by maintaining the distinction between states which

map to the same output; the exact state sequence could be deduced from

the output sequence if needed° Therefore we can deal with a homo-

morphism of the automaton A*, and using g(A*) amounts to doing just

that.
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_.6._.4. Further remarks

This section has provided a means of calculating, or at least

approximating, the capacity of any arbitrarily complex (but finite)

network of MWI's, mappers, and Moore automata° Since a great many

mechanisms can be approximately modeled by networks of this type, we can

now calculate the capacities of many systems° In the chapter on regu-

lation we will show that the power of a regulatory system to regulate

is limited by its channel capacity; consequently this section is of

substantial importance to the theory of regulation°

3.6°4° Capacity of noisy channels

A Moore automaton is an example of a deterministic channel - a

_(_) = Oo A nondeterministic channel may be viewedchannel for which

as a deterministic channelwith an unknown input, W, so that

H L ---- (Y) = 0 although _x(Y) _ Oo
< W,X >

W

--X >I DeterministiCchannelIII > --y

If we think of _ as "message input," _ as "output," and W as "noise

input," and the channel as a relation R between the three s-variables,

this adequately characterizes the situation of the noisy channel°

HL(_) is the information rate for the output sequence° The

identity

HLcy) _ TL(_ : Y) + H_(Y)



shows that the information rate at the channel output is the sumof

the rate at which information is passed from messageinput to output

and the rate at which the noise contributes to the output, since the

last term,

is the rate at which the noise "corrupts" the output in spite of the

message°

The last term is zero for noiseless channels° If the contri-

bution of noise is regarded as a nuisance, so that TL(x : Y) is the

rate of "_seful" information, then the channel_eful

information is

Cu_eful =max_ TL( _ : _)_

with the maximumtaken over the distribution_ N(W,X,Y) compatible

with both R and the assumed characteristics of the noise source°

What one regards as message and what as noise is arbitrary;

and X play symmetric roles, and the equation

shows this clearly° If TL(w : X) = O, ioeo, the noise is independent

of the message, then

and the output information rate is at least the sum of the message=to-

output rate and the noise-to-output rate°
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IV. INFORMATIONTHEORYAND COMPLEX SYSTEMS

9o

Introduction

In this chapter we will focus attention on information theory

as it applies to complex systems. After a brief consideration of what

is meant by complexity, we will consider several information theoretic

tools for dealing with complexity in systems and will show how these

tools can lead to a better understanding of such systems, by discarding

excess information@ The basic point of the chapter is that to under-

stand a complex system, one must discard much nonessential information,

deal while preserving that related to the structure of the system°

4.1. Complex systems

4.1.1. Measuring complexity

We will deal briefly in this section with some of the difficul-

ties which arise in attempts to measure the complexity of a system, and

we will propose two measures which, although not perfect, nevertheless

are consistent withmany of our intuitions° No attempt will be made to

deal with "systems" in the Vague, general sense of that word, but rather

only with systems as ordered sets of s-variables and as networks of

machines, probabilistlc or not, embodying those variables. Moreover

we will consider only dynamic systems, in which the s-variables repre-

sent time sequences, and the focus will be on the complexity of the
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system's behavior rather than on the complexity of the system _er se°

Complexity is a poorly_defined notion in which the subjective

componentso predominates that it is probably impossible to produce a

definition, much less a measure, acceptable to all people in all.

circumstances° Yet few would disagree that there is a strong link

between complexity and information; the more information one has to

take in to "understand" the system_ (ioeo, its behavior), or to describe

it, the more complex it seems°

Wespeak of the complexity of a system as if it. were a property

of the system, and t_hat semantic _age obscures the fact that complexity

is really a relation between the system and its observer, as is apparent

from the fact that the same"thing" (say a watch) may appear quite

complicated to one observer (a housewife) while not nearly as complicated

to another (a jeweler). Whena "thing" appears less complex to one

observer than to another, the two may actually be considering different

systems (ioeo, different variables) or, if not, one observer may under-

stand the system better ® have a more ade:uate mental model of it, that

is, so that it appears more predictable and !.e_ mysterious°

Onecontention of this section is that it is to the observer's

"model" of the system, rather than to the system itself, that anymeasure

of complexity should be applied° By his model _e meanthe ordered set

of variables comprising the system, together with his best current guess

as to the internal dynamics of the system ._what system-values are most

likely, which variables are causally linked to which others, what

functional relations obtain, and sc on _ embodiedin his a .pzior_



"probability" distribution Pi, giving for each possible past history of

the system, the "probabilities'! for the ensuing system-value

si = _Xil , _, ..., _':

Pi Pi(silsi l ,si 2,°°°)°

Dealing with the observer's model rather than with the system itself

serves to remove the problem of the observer, to some extent, by making

objective his knowledge (or ignorance, or intuition) about the system@

Having made clear that we will deal hereafter with models of systems

rather than with systems themselves, we can revert to use of the word

"system" as a convenient shorthand for "model of a system," bearing

the distinction in mind.

An apparently reasonable axiom to adopt with respect to a

measure of complexity is the following:

If one system is a homomorphism of another, then the

complexity of the former should be less than the complexity of

the latter°

This appears to be well in line with our intuitions, for a homomorphism

of a system is usually thought of as a simplified (Joe o, less complex)

version@ If this axiom is accepted, then the following is a direct

consequence of it:

If two systems are isomorphic, their complexities should

be equal°

For if a pair of systems are homomorphisms of each other, they are

isomorphic, ioeo, relabeled versions of each other@ We feel that

if we understand one system, we understand another isomorphic to it
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(indeed, this is a common teaching device), and that therefore the two

are equally complex° The axiom is quite strong in that it states that

the two systems in Figures 13 and 14, which are isomorphic, are equally

complex° In some sense, the system of two parts seems more complex than

the other; yet our intuitions on this point are contradictory_ for it is

commonly thought that a system which can be "broken down" into parts

is less complex than another, having the same number of states_ which

cannot - at least that is a common attitude with respect to really

large systems°

The axiom rules out reduction of com_l.exity through mere

relabeling of states and allows "as to view every system as a one_

variable system, through relabelingo This may seem to conflict with the

observation that relabeling a system sometimes does in fact make it

appear less complex, as when one notices that a system which is under

study is isomorphic with another system which one "u_..derstandso" This

L

is not necessarily a weakness of the axiom, but rather further support

for our insistence on measuring complexity of one's model of the system;

for what apparently happens when the isomorphism is noticed is a

revision of the model, making the model, for the one system match that

of the other°

Another axiom is the following:

If a system is composed of a number of independent parts,

the complexity of the whole system should be the sum of the

complexities of its parts°

If one is to be able to relate the complexities of the parts to that of
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the whole, this would seem to be the most natural relation at least

when the parts are independent. Yet it is open to the objection that if

the parts are "similar" or even isomorphic, even though independent,

then the whole is in some sense not much more complex than one of its

parts. To counter that objection would require bringing in some notion

of similarity or else scrapping the axiom_ we will do neither, just

regarding the weakness which results as the unfortunate consequence of

trying to find a simple, relatively unsophisticated meas_ure of complexity.

The entropy function is consistent with these axioms, and we

therefore propose two measures of complexity related to the distribution

Pi (si _ si-I,s i'2,...). We define static complexity CS as the uncer-

tainty as to which system-value will occur at any instant, if the past

history is not known,

C = H(S i)
S

and the dynamic complexity CD as the same uncertainty, if the past

history isknown,

CD = H...,si.2 si- 1 (Si)o

Both CS and CD are obtained from Pi, the observer's model at

time i, and therefore they change, in general, as the observer revises

his model. If the observer starts with a model admitting of complete

ignorance, then C S and CD start at log N, where N is the number of

possible system-values Si, and the complexities decrease thereafter,

although not necessarily monotonically, presumably until the model

represents the objective system well.
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The dynamic complexity CD is zero if the model is deterministic_

this is consistent with the feeling that deterministic systems, although

they may be complex ('viaCS) , are not complex in their style of dynamic

progression°

These measures of complexity have much to recommend them,

although they have apparent weaknesses; the contention of this sectio_

is that the notion of complexity is sufficiently vague that a_ measures

will be found wanting in some respects, but that CS and CD are good

measures at least for manypurposeso

4olo2o Relevance of information theor_ to the studLof com__ex ss_ms

We will mention in this section some common attributes of

complex systems and the relevance of information theoretic methods to

their study.

Perhaps the most obvious feature of really complex systems is

that they are large m not physically, but in the number of system_.

values possible; frequently there are many variables, interdependent

in a non-simple way, with each variable taking manyvalueso As larger

and larger systems are considered, the point is soon reached beyond

which the human, or even the fastest computer, cannot practically cope

with the whole system in detail, and 'the complexity must be "reduced"

by substituting a new system, related to the original system but simpler

than Ito Away of doing this which is frequently possible is to view

the original system as composed of parts, each of manageable complexity

and all related in a not_too_complexmannero Another is to deal with



a homomorphism,or an approximate homomorphism,of the system, thus

giving up somedetail. To use information theory is yet another way,

in which most details of the system are ignored and what remains is

essentially a picture of the "activity" of the variables and of the

statistical linkages and causal connections between them. These

linkages will be explored in later sections of this paper.

Another feature which complex systems often display is a

hierarchical structure - a structure in which the whole consists of

interrelated subsystems, and in which the subsystems are themselves

hierarchical, down to the lowest level of elementary subsystem° By

the term hierarchical we mean to include, but not necessarily imply,

ubiquity of hierarchicai structures is discussed by Simon ll. For the

view of a system as composed of parts to be a useful view, the parts

must interact with each other in a more or less global way - that is,

in a way which is not highly dependent on the internal details of the

parts. The interactions in a communications system, in which the parts

are represented by blocks and the whole as a '*block diagram", is a

common example. In section 4°3 we will demonstrate that information

theory can be usefully applied to effect a Conceptual breakdown of a

system into subsystems, and to measure the constraints holding between

the subsystems as well as within each subsystem°

Many complex systems can be viewedas goal-seeking; that is,

they act in an apparently purposive manner, interacting with their

environment so as to "get their way_" ioeo, so as to maintain certain
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essential variables within acceptable limits° If the e_vircnment

represents a real threat, so t_at the purposive actiom requires act_,_al

action on the part cf the system, then information theory is relevant

in several ways° First, there are certain quantitative statements

which can be made about the coordination required between the emviron._

merit and the system if the latter is to attain its goal.; these will be

developed fully later, in the information theoretic analysis of

regulation° Second, if internal coordination between parts of the

system is necessary to achieve the goal_ this coordination is also

subject to quantitative constraints, of the same nature° Third_ the

system must usually take in information about the ez,viromment with

which it interacts, if it is to achieve the requisite coordination, and

the rate at which this information can be taken in is governed by the

well-developed laws of information transfer through channels°

Complex systems commonly display another feature; their actions

are commonly conditioned by their past history° This feature, which we

can refer to loosely as memory, means that the past has a demonstrable

effect on the present, and this effect can he studied with the tools of

information theory; coordination between variables displaced in time is

just as amenable to information theoretic techniques as coordination

between simultaneously observed variables° Most complex systems do not

have the property of ergodicity, and therefore many specialized theorems

of information theory do not apply; nevertheless, much can still be

said°

In short, information theory is useful, in the study of complex

systems when one is willing to sacrifice the minute details involved
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and to look instead at the variables and their interrelations. The next

section will discuss two devices for doing just that. These are the

Diagram of Immediate Effects, suggested by Ashby, and an information

theory analog to it, the Diagram of Immediate Transmissions.

4.2. The Diagram of Immediate Effects and some information

theory analogs

Introduction

The Diagram of Immediate Effects (DIE) described by Ashby in

Introduction to Cybernetics is a useful device for displaying the

cause-effect relations between parts of a system, and in particular for

displaying independence of parts, feedback relations between parts, and

so on. The price paid for its extreme simplicity, however, includes

the following drawbacks:

(1) The DIE measures the linkage between two parts of a system

with only two values - either the two parts are causally

linked, or are not°

(2) To construct the DIE, one must in general either know the

mappings joining them, cr else be able to force the system

into every conceivable system state.

(3) The DIE is applicable only to state-determined systems.

The coarse-grained character of the DIE means that its quantitative

information about relations between parts of a system is insufficient

for many purposes, and the requirements listed under (2) and (3) are
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impossible to meet in manycases of practical interest, eogo in complex

biological systems°

The Diagram of Immediate Transmissions (DIT) described in this

section minimizes these problems; it measuresthe cause_effect linkage

between parts to as fine a degree as desired_ and it demand_for its

construction only that the variables of the system be observable as the

system follows its natural modeof activity° It is applicable to both

deterministic and nomdeterministic systems°

Oneof the chief advantages of the Transmission measures over

the Effect measures is that the former are better suited for networks in

which there are changing patterns of communication, as in networks

displaying "learning", "adaptation", and the likeo This is because the

transmissions will in general changedaring the history of the network,

whereas the "effect _'measures will not, being derivatives of the system's

mapping which is assumedfixed° The "effect" measuresdeal with what

communication possibilities are inherent in the network, while the

"transmission" measures deal with what actually happens°

Wehave investigated the DIE, the DIT_ and several closely

related diagrams in detail and have reported the results elsewhere12.

here only the major results of that in_vestigation will be given° The

next part of this section deals w/th the DIE, the following deals with

the DIT, and the last part offers commentson the usefulness and

weaknessesof the diagrams°

4o2ol The Diasram of Immediate Effects=__iE_

This section defines the DIE and other related diagrams and

introduces several theorems about them° Although the DIE is cf interest
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in its ownright, it is included here primarily as an introduction to

the DIT of the next section.

The DIE is applicable to a state-determined system S = _Xl,X 2,

-•.., in which each "part" X i represents a machine with input. We

denote by X i the set of allowed values for the variables X l, X , ooo

comprising X--i,and we let the superscripts indicate time. The mapping

fi maps the state of the system, S, into the next state of part Xi;

fi : Xl x X 2 x o.. x XM --_ Xi

The mapping for the whole system is fr ; f : S --_ So

We will find it convenient to use the projection mapping

pr i : S -_ X i which selects the X i component from a vector, or more

generally the mapping Prsa : S -_S a which selects the ordered n-tuple

of components corresponding to variables in _ao We will also use

PrS_Sa: S --_S_Sao For example, with S = _X1,X2,XB_ and _a = _Xl,X3_

we have Pr3(<2, 3, 5>) = 5, Pr_a( <2, 3, 5 >) = <2, 5>,

Prs_sa(<2, 3, 5 >) = 3o

We say X--i has an immediate effect on X--jif there is a pair of

system-values sa and sb for which PrS_xi(Sa) = PrS_xi(sb) and Pri(Sa)

Pri(sb) , such that fj(Sa) # fj(sb); that is, if there are two system-

values different only in their _i-components, which lead to different

Xj-values at the next step°

It is convenient to use an arrow, as in Xi--_Xj, as shorthand

for the phrase "has an immediate effect upon," and a canceled arrow, as

in X--i _-_ _j, for the contrary.



Wedefine the Matrix of Immediate Effe.._..- A = ij M_Mas

follows:

Ii if
ai j _ _ l 3'

0 otherwise o

The Diagram of Immediate Effec_ is a pictorial representation of

Ao It has an open and a closed formo For example, with {_I_X2.,X_]=_

and

A

I i 0

I 0 i

i 0 i
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the closed form is shown in Figure 15, and the open form, with arrow_

heads assumed but not drawn on the right end of each line, is shown in

Figure 16o The DIE is an excellent device for displaying certain cause_

effect relations between the variables in a system, giving as it does

an easily grasped overview of what parts affect which, what feedback

relations may be present, and so Ono The open form, while not as

simple as the closed form, has certain advantages, notably that it

may be iterated to display cause®effect "chains" as illustrated in

Figure 17o The DIE displays effects between individual variables in So

More generally, a subsystem Sa = Xal,Xa2_ooo,Xam C S has an immediate

effect on another subsystem Sb = Xbl,Xb2_ooo,Xbn c S if there exists

a pair of system®values_ sc and sd for which PrS_Sa(SC) = pr$®Sa(Sd) and

PrSa(SC) _ PrSa(Sd) such that PrSb(f <ScJ ) = _ ", PrSb(f_sd_); ioeo if

there are two system-values different only in their Sa-components which
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Figure 15.

Figure 16.

b 4 O

Figure 17.
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lead to different Sb,_,valueso If Sa ar_d Sb are not disjcint_ the cl,ose_

form DIE is not usable, but the open form is_ for example_ with

S_a=

Figure 18o

A convenient feature of the DIE is that W__e_ several variables

are grouped into subsystems, the DIE for the subsystems can be deduced

directly from .the DIE for the individ_l variables o

Theorem IVol

Let S_a and Sb be subsystems of _o

3X i _ Sa,X j _ Sb S oto Xi --_ o

Proof:

The direction _ is obvious° To show _, suppose Sa --_ Sb

as evidenced by system_values sc and sd which are identical except for

_some or all of] their _a®COmponents and which are mapped by fj into

different Xj_values, for some Xj in Sbo If sc and sd differ in only one

component, the theorem is automatically satisfied° Suppose sc amd sd

differ in exactly two components, those for Xal and Xa2o Thez_

fj(Sc) = fj(Xal, xa2, ooo ) = x 1

fj(sd)= f (x l'x a2'°°°) x2 Xl

where the dots indicate that the remaining components of sc and sd are

identical° The theorem states that either Yal --_ Xj or Xa2 ---_Xj

(or both); we will assume Xil _-_ Xj and Xi2 _Xo and obtain aJ

contradiction°

Consider Se:

= _ x r x ase al' 2' °°° _ °
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Figure 18.

Figure 19.

Figure 20°
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Since fj(sc) = x I and X=al _ Xj, fj[Se) = x I because sc an_d se differ

only in their %_componento A¢od sluice fj(Se) = xI and, Xa2 _ _4-

fj(sd) _ xI because se and sd differ only in their _o_componento But

fj(sd) = xlo The contradiction implies that either Xal --_ , or

-- -- (or both)°
Xa2 -->Xj

The theorem is true, then, if sc and sd differ in two components

onlyo The obvious extension of the foregoing, when sc and sd differ in

L_

arbitrarily many components, shows that at least one variable in S
a

must have an immediate effect on Xj o

Qo Eo Do

It follows from Theorem iVol that if some variables are grouped,

i.e., considered as components of a new, compouz_d variable, the DIE

for the new system can be deduced directly from the DIE for the old

in Figure 19, and if X I and X 3 are grouped to form X4 = <XI, X3_ ,

the DIE f°r S-'2= _X4' %} is as shown in Figure 20o

The immediate-effect set of Xi, denoted A\Xi) _ is defi_ed by

In the DIE, it is the set to Which Xi sends arrows° The immediate_

effect set of S-_a¢S, denoted A(Sa) , is

It follows from theorem IVol that

U A!Xq)o

If Sa and S=b are disjoint sets whose union is S, they are independent

if and o_l.yif sq+_ sbands__ _k_io_o,ifA(%_ _ _,_dA(Sbj__b°



108

effect may be passed through a third variable or even a whole chain, as

ifXi --->Xk, _k --> Xl, Xl --_ Xm, "'', _ --> X--j. For this reason it

is useful to define the k-effect of Xi on Xj; X--i has a k-effect on Xj_

symbolized _ _ _j, if there is a pair of system-values sa and sb

for which PrS_Xi(Sa) --PrS_Xi(Sb) and Pri(sa) _ Pri(sb), such that

fj_'l(sa) _ fj_-l(sb) , where fk-l_ stands for k-1 interations of the

system's mapping. Thus X--i _ _j if variations in Xi by themselves

can sometimes induce variations in Xj, k steps later° The Matrix of

= is defined byk-effects Ak [aiJk] M,M

I '_ _ _ _

aiJk = I i if X_ _ Xj,0 otherwise o

The Diagram of k-effects, DKE, is a pictorial representation of A k.

Definitions for the k-effect of S_-a on gb' S'-a _ S'b, Ak(_i )'

and Ak(_a) will be omitted since they are strictly analogous to the

earlier definitions°

Theorem IV.1 holds if "k-effect" is everywhere substituted

for "immediate effect," and as before,

_(_) = Xi U Sa Ak(_i)°

The operator/_ maps all positive real numbers to 1 and all

other real numbers to zero° Operating on a matrix, it creates a matrix

of zeroes and oneso

The fundamental relation between immediate effects and k-effects

follows°
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TheoremIVo2

!o

That is, if X i then there must be a chain of exactly k

arrows in the DIE leading from X_i to Xjo

Proof:

For k = l, the theorem holds° Let k = 2, and suppose X_i,__j,

as evidenced by a pair of system_,va!ues sa a_d sb satisf_ying the require®

= _ _'= s2 are identical, then fjf_(Sa) =ments If f_(Sa) sI and. f_[sb)

fjf_(Sb) and % _ Xj, contrary to our supposition; therefore s! @ sho

The components of sI and sz which differ correspond to a set of

variables S3 C A(X i);

S_c

Now sI and s2 differ only in their E'co_eomponer,ts, and fj(sl) # fj(sh);

thus Sc ---> Xj° By theorem IV°I there is an _i in S_ such tha_ X: --_ Xj,

and therefore there is an X_ such that Xi --_ _'i and X_ --_ Xjo This

proves the theorem for k = 2o

Suppose the theorem is true for k = n - i, so that there is a

-- /_ )o Ifchain of n _ 1 arrows from X i to each variable in An_,IAX _

% _ Xj, there exist systemovalues sa and sb differeing o_ly in

their Xi_components and such that fj_ _<s a) _ fjf_-l(sb)o This can

only be the case if fn_l(sa) @ fn_l_s_[ b__ the components which differ

define a set _d as before:

S=d = { _ I Pri(fn_°i(sa )) $ Pri(fn_l(sb))] °

As before, Sd must have an immediate effect on Xjo Therefcre, there



must be an _ in Sd such that the DIE has a chain of n - i arrows from

_i to _ and also an arrow from X_ to Xj.

By induction, then, the theorem is true for any k _ 1.

Q. Eo D°

Theorem IV.2 has an obvious corollary.

CorollarF IV. i

Ak(X i)c Ak(_i) = A(... A(A(A(_ i))) ...)

That is, the k-effect set of X--i is included in the set of variables

reached from _i on the DIE by following all the chains of k arrows o

In fact, if (nl, n2, .oo, nm) is any partition of k,

/_(Ak) _ (AnI-A_n2. ....A_ nm)

and

A_(X i) c Anl(An2(...(Anm(x i))o.o))o

This fact leads to a simple procedure for estimating high-order A k

matrices from lower-order ones. The procedure has been reported else-

wherei2°

The next section will develop the Diagram of Immediate Trans-

missions, which is strictly analogous to the DIE, and will compare the

two Diagrams as the development proceeds.

4.2.2. The Diagram of Immediate Transmissions (DIT)

The DIT is applicable to a system S = , , ... ,

deterministic or not, in which each variable Xq represents a "part°"

We will use the same notation in this section as in the preceding, as

far as possible.

Ii0
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The DIE contains information about the system's mapping amd

showswhich parts, actimg alone_ can affect _hich others° The DIT

contains information a_cut the system's behavior, as recorded in a

frequency table; since the behavior may depend on changing external

factors or, as i.n the case of a learming or adapting system_ on time,

the DIT will in general changeas the behavior changes, and in this

sense it is a more dynamic characterization of the system than the DIE.

llt showswhich parts, acting alone, affect which others, and it shows

the magnitude of the effect on a continuous scale, so that one can see

which effects are strong and which are weak. These advantages of the

DIT over the DIE are obtained, however, at %he price of certain compli®

cations which do not arise in the DIEo These will be pointed out as

they arise in this section°

The immediate effect of X i on Xj is naturally associated with

what happens to Xj when X_i varies and all the other parts do not; this ..

is the basis of the DIE and of the DIT as wello But while the DIE

gives the answer tothe simple query, Does Xj ever vary, or not?, the

DIT gives 'the answer to, How much of the variation in Xj can be attributed

to Xi? In other words, how much of the variation in Xj is due to X i

alone, on the average? We denote the measure of this quantity by

tij , call it the immediate transmission from X i to Xj, and define it by

tlj = Ts xi(Xi :X )o

The prime is used to indicate that we are interested in the transmission

between X i at one moment and Xj at, the following moment, ioeo_ as

shorthand for



p

112

_C

Put operationally, tij is the result of the following observations and

calculations on _ = _ Xl' %' "°'' _M_ ° By observation one obtains

one or more protocols which list the successive system-values taken by

during a finite time span. Some particular set of values for all

variables except XA is chosen; that is, an element in the set PrS_xi(S)

is selected, and the protocol is scanned for system-values matching

that element (in all but Xi, of course)° Whenever one is found, the

value of X i and the subsequent value of Xj are recorded, and eventually

a frequency table for (Xi,X_) is thus Constructed. The transmission in

................... _ _ _^+ _ __ _n _. _h_n +.he other variables

are constant at the selected value° The process is repeated for all

the other elements in PrS_xi(S), and a weighted average of all the

resulting transmissions gives tij o Thus tij is a measure of the effect

XA has on XL when the effect of all other parts on Xj is blocked.

As an example, we will calculate t13 from this short protocol

ofS = , , °

time 1 2 3 4 5 6 7 8 9

X 1 1 3 2 1 3 2 2 2 1

X 2 3 1 3 1 1 3 3 1 1

X3 2 i 2 i i 2 2 2 i
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Below are the freque_cy tables for the < X_ X_ > co_ples which cc_,_r

Xi

or:_ceor more o

,1

1 2

1 1 0

2 0 0

3 0 2

Xi

<3, 2>

x5
I 2:

i l O

2 ] 2

3 0 0

Xi

L_

I.

2

3

1 2

0 0

i 0

0 0

Frequency tables for other <X2_ X3> combinations coD.rain only zeroes

and hence have zero transmissicno _ ........J_ ta_i,e_ _hown have tra_smissions

of 0o918, Oo311,and 0o000 bits, and th_

1
tl 3 = _ (0.918)+ _ {_] 0 _ i] [I]i) 'f 8)(] 0 _ 000 )

= O. 5OO o

When tij > 0 we say that Xi has an immediate _I.ran$_s$io_ to Xj_ thIi8

will be symbolized Xi --_ t ---_Xj in general or by substituting the

numerical value for t_ as by X1 ---_0o500 --_X3 for the exsmpleo

The matrix T = [tij ] M_M is the Matrix ef Immediate Tramsmiseion{,

and its pictorial representation is the Di_ram of Immediate Transmissions

_o TheDIT is just like the DIE except that with each arrow or

line is associated the numerical value of the transmission° The matrix

and the DIT in bctn forms are given below, for the example°

W

-_o4,L ]'uo_5 Oo50

i
0o16 O o06 0o16

The closed fcrm is shown in Figure 21 _ndthe o_en fcrm in Figure 22°
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0,41

0,75 0.06

Figure 21o

_\_,'- o.,6

___.__.o__

Figure 22°



The following theorem gives t_.=emeet fz._dam.er.tal relation

between the DIE and the Z,IT°

Theorem IV°_ .

Proof:

sB differing only in their _i i _ • .... _.... e ._ _, i" _-._ompc,...,_ ..... _', -j_.._a] = fj'_shJ°

implies that H_ v ('X'_ = 0 and t__ that *_iJ = O o.....o.i _ 3.

Suppose X--i 4-> Xj ; ther_ fcr every pair of ey_tem_:_al.ues sa aLd

T.nis

Qo E° _io

For a state_,determined system, then_ the absense of an immediate

effect of X i on Xj forces the corre,.p ....d_.ng immediate t.ran_mis_io,_ to be

zero° The presenme of an immediate effect, does not., of course, imply

that the immediate transmission m_t be positive°

Just as in the previous section, we can generalize the definition

by allowing it to include transmissio_:s of subsyste_ on ether subsystems,

and also transmissions across more than c<e time interval.° We defir,-e

the k=transmission from Sa to Sb as _SaSo ,k ".

tSa_gb,k _S,-Sa\Sa : ._0, o

The k, like the prime used earlier, indicates a time gap of k time

units or steps° We say that Sa has a k,=trarosmis_ion to Sb if

tSaSb,k > O; this is symbolized s,,_!S'=a _ t _ S_b, or with the

numerical value in place of the t..

Theorem IVo3 can be stTen i_e_,_d _o_" • _ '_'- g ..................... _.id.erab_y as_ fo._.i.cws.
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Theorem IV.4

Let S--a and S--b be subsystems of a state-determlned system So

Then {Sa --_t _Sb_ ==_a _Sb_ "

The proof is identical in form to that for theorem IV.3 and will not be

given here.

Recall from the last section :

_Xie S-a, Xj _ SA s't" Xi _Xj_ _=_ _a __b_"

The corresponding statement for k-transmissions is only half true, that

is:

Theorem IV. _

Proof:

m m u

Let S and S be subsystems of S. Then

_3Xq _ _a, Xj _ S--bs.t. _i --* tl _ _j_

and t2 _ tlo

_ Sa-_ t2k-->Sb'I

t2 = tSa,Sb,k = HS_Sa(S_) - Hs(S_)°

By using the identity H(X, Y) = H(X) + Hx(Y ) and by adding and sub®

tracting HS.xi(X k), we obtain
J

+ (Sb-Xj) - Hs

Grouping the fifth and third, the first and last, and the second and

fourth terms,

t2 ,Xj,k= txi

txi,Xj,k = tl"

: Sb-X j )+ TS_Sa (Sa-X i X k) + T_.k _ - (S : k k
Aj _-_a a

Q.E.D.



In fact the theorem holds if subsystemsSi and Sj are substituted

throughout for Xi and Xj ; this is also the case in the _tatement for

k-effects o

That the converse of theorem IVo5 fails can be shownby an

example° The frequency table below gives the frequencies N(X_ Y_

XZ+I yX+l) for a system S = {X , Y}o

y_ S_<X _ > =

< i,i >

< 1,2 >

2,1_

< 2,2

< xT+l y_+l •

= S_+l

<i,i> <1,2> <2_i> <2,2>

1

0

0 0

i i

i I

0 0

1

0

0

1

Calculations based on these frequencies give the following values:

ts, S = l; ts_ X = ts, Y = tx, S = ty_ S = tx_ X = tx_ Y = ty, X = ty_y = O.

From this example we see that one subsystem may have an immediate

transmission to another subsystem without there being any lower_order

transmissions at allo

The strongest statement it is possible to make regarding the

converse of theorem IVo5 is given by the following theorem°

Theorem IVo6

Let Sa and Sb be subsystems of a state-determined system

So Then

_a --->t _ Sb] ==_ {BXj _ Sb S°to Sa,-+t _ Xj}o
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Proof:

Suppose that for every Xj in S%, tSa,Xj, k = 0. From the

definition of k-transmission, this implies that for every Xj in _b'

k

HS_Sa(X _) = HSa,S_Sa(X j)

The term on the right is Hs(X_), and it is zero since _ is state-

determined; therefore, HS.Sa(X _) = 0 for every Xj in Sb" The following

Thus,

 b(HSs 

and since entropies and transmissions are always nonnegative,

=0.
H S

-S a % b g

Consequently,

tSa,Sb, k = HS.Sa(S k) - HSa,S.Sa(Sk )

=0 - 0

=0.

When tSa,Sb, k > 0, therefore, the supposition that tSa,Xj, k = 0 for all

X--jin _b must be false.

Q.E.D.



Even in a state-odetermined system, one canz:_otin general infer

from Sa _-_t --_Xj that there is some_i ir_ _a such that IXi _ t _-_'.jo

_ for the DIE and the LIToThe situation is somewhat diffelent, t_._n,

There is a simple :relation between the DIE of a system and the DIE of a

related system formed by group_r_.g va:r±ables i:,_to _ubsystems% t_he

relation is more complex for the DITo

Next, recall theorem IVo2, which said that if _i _ Xj_

there must be a chain of k arrows in the DIE linking X"._to _.o TT_e
i ..]

corresponding statement for transmissions is not true; X_i "_ t k____ _j

is possible when there is no chain of arrows in the DIT from _i to Xjo

One would expect that if X i were to have a k._transmission to Xj, this

would have to come about by Xi having a_ immediate _ransmizzion to the

whole system S, S having an immediate transmission to itself, and S

Y! tl

having an immediate transmission to Xj, so that S woald be a channel

for the k-transmissiono Surprisingly, this is not necessary; below is

a frequency table N(X_, X_+I, X_2) for a system _ = _ X°I' and

< x >

<I,i> <1,2> <2,!> <2,2>

2 0 0 1 1

from this table one cal.ct[lates tha_ IX.has Lo immediate transmission to

itself, but that it does have a ko_transm/.s_ion to itself (for k = 2)

of 1 bit.

(The table could represent the transition frequencies for a

Markov chain, if zero in the table were replaced by _ and 1 were replaced



by l-g ; tx, X could then be made arbitrarily small, and zero in the

limit. )

For state-determined systems, however, S may be viewed as a

"channel" for the k-transmission.

Theorem IV. 7

Let S--a and S--b be subsystems of a state-determined system

S. If _a--> to __b' then _a--_ tl--_ _' tl _tO' and

-, t2 --_, t2 _ to, and _ -_t 3--_ S--b,t3_ tO•

Proof:

Now

tO --tSa,Sb, k --HS_Sa(Sk).

tI = HS.Sa(S')

Hs_sa(S')+ HS,,S_sa(S_)

The last term is zero, since S is state-determined.

tI = HS_Sa(S' , Sk)

= HS_Sa(S k) + HQk_b,__-_a_ (S')

tI_ HS_Sa(S_) = tO -

Next, t2 = HS_s(S') = H(S')

° H(s') + Hs (Sbk)

, Sk--H(S, b)

= H(Sk) + Hsk (S')

t2 = HS_Sa(Sk) + T(S-S a : Sb) + Hsk(S' )

HS_Sa(Sbk) = tO •

120



Last, t 3 = HS_s(S_) = H(S_)

- H(s[) + Hs,(S[)

- H(S' , S[)

= t2 _ tO ,

Thus tl, t2, and t3 are all at least as large as too

Q. EoD°

In summary, the DIT is similar to the DIE in many ways when the

system diagrammed is state®determined, but otherwise its properties are

quite different and only weak generalizations may be made about ito

Even so, it is a useful device for displaying cause®effect relations

in a system of parts° The next section will discuss the strangths and

weaknesses of the DIE and DIT.
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4.2° 9. Comments on the DIE and DIT

In the same way that a hammer is well suited to driving nails

while useless for tightening nuts, the DIE and DIT are tools which are

well suited to a particular class of problems and naturally poorly

suited to others° Both diagrams have arisen from the question, which

parts of this system affect which others? But the emphases in the

two cases are slightly different, for the DIE deals with which parts

might affect which others (within the constraints imposed by the system's

mapping), whereas the DIT deals with which variables actually do affect

which others, and how much° Both display the answer in a pictorialway

which allows one to get a grasp of the system-as-a-whole; the DIT can

be drawn with the thickness of the arrows proportional to the corres-
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ponding transmissions, making the representation even more vivid° When

this is done with the example on page ll4 the result is as shown in

Figure 23.

Moreover for a system whose behavior slowly changes, a movie-

style sequence of DIT's (one for each epoch in the system's history)

could represent gross features of the changes in a similarly vivid way°

The major drawback of the DIT is its inability to adequately

represent cause-effect relations in which the "effect" is caused by

several variables acting in concert, unless these variables are explicitly

grouped as components of a compound variable represented in the diagram°

For the variables may only have an effect via their participation in the

_ _ _,_ _,,_ =_ _,, _l j, and ..... variables ........

individually have effects may have none as a group, if some cancel the

effects of others° Indeed the latter phenomenon is the essense of

regulation, and it will be discussed more fully later°

There is another disadvantage of the DIT which is important if

the diagram is based on observation of a real system; the length of the

protocol required to minimize the effects of random sampling grows

_roughly] exponentially with the number of variables° For this reason

and others, T(X i : X_) is in some ways a more practical measure of the

effect Xi has on Xj than is TS_xi(X i : X_); in the next section we will

eXplore that transmission and its useso



123

Figure 23°



4.3. Decomposition of s_stem constraints

124

Introduction

A dynamic system of M supervariables, observed over n time

intervals, provides values for Mn variables° The total constraint

over this set of variables cannot, in general, be decomposed into a

sum of constraints over proper subsets; this was shown in section 3°3°

The total constraint dan, however, be decomposed into constraints

holding within subsets and between these subsets, and various decompo-

sitions of this type will be discussed in this section°

After a general consideration of such decompositions, a method

of decomposing hierarchical systems will be proposed and illustrated°

4o3.1o Total constraint

In this section we will be considering the constraint over the

set of variables _X i I i <_ i <_ n, _j _ S _ representing a dynamic

system of M super-variables over a duration of n consecutive time

intervals° These variables correspond to the values which might appear

in a protocol of length n:

time:

X1

i

i 2 3 ooo n
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Wewill denote the above set by _n_ with additional identifying

subscripts, when necessary, preceeding the n:

2a,n _ Xj I _ i _< n, Xj g Sa °

The quantity of primary importance for a dynamic system

S ={ XI' X2 ' °°° XM] is the total transmission in g over n time

intervals, T(_n)o It is the grand transmission measuring the

constraint over all nM variables - M variables for each of the n time

intervals. T(_n) is an upper bound for the magnitudes of all trans-

missions and interactions involving any or all of the variables° The

following sections in this chapter are concerned primarily with different

ways of decomposing this grand transmission into additive components,

by viewing the super-system first as composed of interacting super-

variables, next as a system with memory, and last as a group of inter-

acting subsystems°

Normally, T(Zn) increases without bound as n-_ , so we will

use the superscript L as before to denote the normalizing-and-limiting

operation:

TL(_) = lim i T(_Kn)
n-_ n

when the limit exists.

per unit time interval°

TL(z ) is the total transmission in the system

4°3.2° Two primar_ decompositions

By decomposition of T(Xn) we will mean expressing it as a

sum of other transmissions° The primary Decomposition Identity is as

follows:

N

+ T(sI : s2 : ooo:sN)
k=l
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where S is any set of variables and is the union of the disjoint sub-

sets Sk, 1 _k _N° The set _n for a super-system S = X1,X2,ooo,

can be displayed in the manner shownbelow, which is meant to suggest
m

a sample protocol of So

time: 1 2 3 oo n

_

gM: x

There are two primary ways to "slice" this display: into M horizontal

strips representing the super-variables, and into n vertical strips

representing the system at the different times°

We denote the set representing a horizontal "slice",

_i X2 nI by % The horizontal partitioning suggests thej, j,.oo,Xj _ j,n o

following version of the Decomposition Identity:

N

; _ + (_:L,,r_o"_2 : )oT/ ° " %M,nT_Xn)- I T(%j,nJ ,n ....
j=l

Consider first the terms T(%j,n), representing constraints

internal to the several super=variableso When we say a dynamic system

exhibits memory, we mean that there is a constraint holding over the

variables displaced in time° For memory implies a constraint, an effect

of past system_values on the present value; a system without memory is

one for which knowledge of the past and present is of no use in predicting

the future° .The constraint representimg memory (c_er a finite time

1 2
span) in the super_variable Xj is_ in this view_ just T(Xj:Xj:oo°:X_)
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or
Tt_j,n)o The summation in the ide[_.tity therefore re_resents the

memory-constraints in the M super_variab!es (over n time intervals),

{<_ X1,2The last term represents the constraint over the set X l,

X n 4 X 2 _ >} !t is the constrair_t_ that is,"°°' i >' °°°' < ' M' °'°' °

binding the super=variables together _"[put over only a finite time span)°

This decomposition would be appropriate, for instance, in

studying the behavior of a married couple, with the "family" constraint

decomposed into one memory constraint for the husband, another for the

wife, and a term representing the bond between them.

Denoting, as before, the norma!izing_and-limiting operation

with a superscript L, we have

j) = n+@ n j,n

and N

j=l

The last term is bounded by the constraint capacity of the super-

system So

The previous decomposition was appropriate to the view of a

system as a collection of interacting parts, each with memory. The

next decomposition fits the view of a system as a number of parts

mutually constrained at each instant, with memory being attributed to

the
system as a whole. Denoting, as before, the set X , X , ooo, X

by S i and the set {<sl>, <$2>, ooo, <sn>} by <_n >, it is

n

T(Zn)- T(Si)+
i=l

The terms in the summation are the instantaneous constraints

holding in each of the n time intervals, and the last term is the
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memory constraint for the compound super-variable < S • (note the

difference between _, a set of super-variables, and < S >, a super-

variable with components.) The term T(<_ n >) might be called the

system memory constraint°

This decomposition is appropriate for str&ctures of the form

shown, for instance, in piano music, where the restriction to "harmonious

chords" implies an instantaneous constraint while the restriction to

"melodious chord sequences" implies a system memory constraint°

Application of the normalizing-and-limiting operation gives

TL(<_>) = lim 1 T(<_ >n->oe n n

and
n

T 14_ 4 _1

= ] + T"<< :)o

The total constraint, per step, is the sum of the average instantaneous

constraint and the system memory constraint (per step)o

The two primary decompositions of T(In) are by no means the

only ones possible, and in the next section we turn to a hybrid type,

decomposition of a system into subsystems with memory° First, however,

it should be emphasized that the memory constraint for a compound

variable may be less than, equal to, or greater than the sum of the

memory constraints of the compcnents o For example, if S = { X, _

and y = x we can have _ > ) less than T(%n) + T(_n ) by

having X" be cyclic:

time: ooo, "C , X+l.,_+2, T+3_ _44,_+5, ooo

I _ "" 1 2 °oo

X: ooo, i , 2 _ '_ _ _. , , ,

S

_: °°°, 2 , I , 2 , I _ 2 , i , .oo
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T(<_n>) : n_l bits

T(%n) = T(_n ) = n-i bits

Or we can have T(<_n > ) greater than T(%n) + _(_n) by having

take values i and 2 equiprobably and independently:

i

S

time:

X:

Y_

ooo, T, _+i, "c+2, _+3, T+4, _+5, ooo

ooo, i, I , 2 , 1 , 2 , , o.o

ooo, , I , i , 2 , i , 2 , ooo

T(<_ n_) = n bits

T(3n) = 0 bits°

If the supervariables are independent over the n time intervals,

ioeo, if T(%I, n : ooo :%M,n) = O, then the system memory

constraintexactly equals the sum of the individual memory constraints:

M

T(<Jn>) = _ T<%j,n) = T(En)O
j=l

This follows immediately from corollary IIIo2, which gives

n

T l,n:o :o I :o,
i=l

and from the decomposition identities for T(Xn)o

4°3°3° Hierarchical structures

One of the most time-honored and successful approaches to the

study of complex systems has been to view them as composed of inter-

related subsystems, to study each subsystem individually, and then to

study the interrelation between them° The fact that this approach has

been so successful for so long attests to the ubiquity of systems

having structures amenable to the approach - structures in which the

subsystems can be understood more or less adequately in isolation and in
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which the subsystems interact on a more or less global basis° Simon,

in his delightful paperll, deals at length with such systems and with

a reason for their prevalence; he uses the word "hierarchical," as do

we, to meannot only the type of structure ir_ which each subsystem has

,y
a "boss, as ir_ the org&_ization of a busi:cess firm_ but to include

any type of structure in which the system is decomposable into inter-

related subsystems (and perhaps the subsystems into sub-subsystems,

and so on), as exemplified by a book which is composed of chapters,

which are in turn composed c.f sectior_s_ which are divided into para_

graphs, and so o_,o

Simon points out that the subsystems of most physical and

hierarchies are mo_t easily decomposed by noting "who interacts with

whomo" This difference is largely irrelevant, however, for we note that

in both cases, what allows a collection of parts to be reasonably

called a subsystem is that those parts exercise a stronger effect on

one anothex than on outsiders; that is, the cause-.effect links or

communication ties &re disproportionately strong within the subsystem°

The Decomposition Identity .is admirably suited to the decompo,_

sition of S into N subsystems Sk, I..< k <- N:

N

T(Z ) -- k=l_" T(Zk_) * _(zl' _°°z2_n" °°° :Zk,n )°

The identity expresses the total cc_str&i:_t over S as the sum of the

individual constraints within the N __=-y:_._*_._m_ _ p_us_'the constraint

holding between the subsystems (co:u_idered &s ba,._ic units); it thus

corresponds precisely to viewi_g S_ as a whole_ or_ the left, and as a
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collection of N interacting subsystems, on the right _0_ _hermore,

each term T(_ k,n) on the right may be decomposed by the ss,me identity

(or the earlier ones) into terms which _orre_p_nd_,_ to viewing subsystem

Sk as composed of interacting parts (or variable_, etco). _d so On o

When n = l, the identity is not well suited to decomposition of

dynamic systems, for if one variable in a system has a direct effect on

another that effect will usually show up most strongly one time interval

later. On the other hand, the limiting form of the above i_.entity,

N

k=l

while it represents the decomposition well, contains quantities difficult

to estimate on the basis of experimental protocols unless those proto-

cols are very long, For these reasons the identity for n = 2,

N

T(_2) _ I T(_k,2) + T(ZI,2: Z2,2: °°° : X N,2) ,
k=l

is often the most useful°

We will next suggest a practical method for decomposing systems

assumed to be hierarchical and then illustrate it with an example.

When one is confronted with a mass of data in the form of a

protocol for a system _, decomposing S into parts S_l, S_2, °°°, S_N in a

"reasonable" way is a formidable undertaking, especially if little is

known about the variables° The DIT is sometimes useful for detecting

which variables strongly affect which others, toe., for detecting a

natural decomposition of S, but a more generally useful measure is

T(X i : X_), the transmission between variable Xi at one moment and some

other variable at the next° Of corpse the best measure of the inter-



dependence of two super_variables is TL(xi : X_j), but estimation of

that number from a protocol leads to sampling problems unless the

protocol is very long; T(X i : X_) is more convenient statistically and

and also implies a direction - the effect of Xi on Xjo

To illustrate how T(X i : X_) can be used to suggest a decompo-

sition of _ into parts, we simulated on a computer a simple network of

one Markov source, one mapper, and three MWI's° We then obtained a

lO00-step protocol of the system° The first fourteen steps of the

protocol, a not atypical segment, are shown below°

time:

S

XI

X2

xB

X4

x 5

0 1

1 1

1 1

1 3

1 2

1 1

2 3

1 1

3 3

2 2

3 3

2

2

4 5 6 7 8 9 i0 ii

2 2 i i 2 2 i I

3 2 2 I i 2 2 i

i i i 2 2 2 i i

3 3 2 2 i 3 2 2

I I i 2 2 2 i 2 2

1 i I i 2 i 2 2 i

12 13

2 2

I 2

2 2

1 3

2 2

2 i

14

i

2

2

2

i

2

Next, frequency tables were compiled and the transmissions T(X i : X_)

were calculated°

• (xi :

X1

X2

x B

x4

x 5

These were as follows:

xi x%

o124 o013 1,o057 o131 °073

°002 °023 °002 o118 oO12

o138 o012 o54! °036 o017

o002 °4o5 °oo2, oOO7 oO17

o000 o182 0002 o210 o194

132



If the parts X_i are represented by Q and arrows representing

transmissions are drawn in one at a time, starting with the largest

transmission T(X I : X_), the sequence shown in Figure 24 is obtained.

The sequence suggests that S can be naturally decomposed into

S--a= [_i, _3} and S-b = _2, _4, _5) "

In fact this suggestion is well in line with the facts. The

DIE for the network is shown in Figure 25. Note the similarity

between the DIE and the ninth diagram of the sequence.

The mappings for the mapper and MWI's are as follows:

m_I, #i:

MWI, #2:

i,i

1,2

1,3

2,1

2,2

2,3

X I

i 2 3

1 1 1

1 1 1

3 i 3

2 2 2

2 2 2

2 2 2 (xi)

_X4,X5>

_2

i,i

1,2

2,1

2,2

X 2

i 2

i i

i i

2 2

i 2
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_FI; ##3:

Mapper

_, #5:

X 1

/_3

1

2

3

x3

i 2 3

3 i 3

2 2 2

2 2 3

(with delay) #4:

XI,X5_

Y_4

I,i

1,2

2,1

2,2

3,1

3,2

X 2

i

2

2

2

2

i

i

i

2

i

2

i

i

< XI,X4>

i,i

1,2

2,1

2,2

3,1

3,2

i

2

i

2

i

i

x5

2

i

2

i

i

i

(xA)
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(c)
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(d)

(e)

(
(f)

)

(

(i)

i. (
Figure 24.
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Figure 25°
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Evidently a "good" decomposition c.f _, other _hings being eqaai,

is one for which the number of parts is ' - " "ream _nable <perhaps approxi-

mately the square root of the r_umber of v_riables) and the interpart

constraint is small ccmpared to the to}az as small as possible, in

fact° The identity and the associ&ted _ _ o ÷ 7e_p_rlmen<:a_ values for _he

decomposition _ = Sq U & are giver_ below.

5.101 = [1o957 + 2°722 ] + 0°422°

The transmission between the subsystems is only about 8_ of the total,

indicating that the choice of Sa and Sb is a reasonable one° _y way of

contrast, if S is decomposed into S_c = X1, X_2 and S_d = X3' X4, ,

a decomposition which the T(X i : X3) values imply is inappropriate, the

following values result:

T( Z 2) --- [T(Z°,2) +T(Zd,2)] + T(Zc, 2 = 2d, 2)

5olO1 = [Oo168 + 1o966 ] + 2.967°

Here the transmission between subsystems accounts for 58% of the total,

evidence that S c and Sd do not constitute good choices for subsystems°

To continue the analysis, Sa can be decomposed two ways ® into

individual memories plus intervariable constrainr.,

T(za, 2) -- [T(%1,2>+ ] " T( i,2 : %3,2)

1.957 = [0o124 + 0o541 ] + 1o292

or into instantaneous constraints plus system memory,

1o957 = [ 0.14% + 0o144] + 1o669o
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Neither decomposition is very successful; the numbers indicate a strong

intervariable constraint and a strong system memory. The sameis true

of Sb:

2.722 = E0°o23 * o°oo7, oo194] * 2°498

2°722 = [0o201 * 0.201 ] * 2°320

The indications are that Sa and Sb are not readily decomposable by

these identities°

Analysis of Sa and Sb in terms of their kinematic graphs 6

bears out this conclusion. The kinematic graphs of Sa, with

representing the state _ X 1 = i, X 3 = j >, are given in Figure 26° The

arrows from transient states are shown dotted° Sa enters state < 3,3 >

only when the input contains asequence of four or more consecutive l's,

and it leaves < 3,3 > whenever the string of l's ends°

The kinematic graph of SA, with O representing state

< i, j, k _, is shown in Figure 27° _b tends to follow the cycle

<1,2,1> ---->< 2,2,2>---_ < 2,2,1.> _ <2,1,2>---_<1,2,2>

until Sq enters the rare state < 3,3 >, at which time SA soon "resets"

to <l,l,l > and waits for Sa to change state; then S--b starts up again°

The decomposition identity suggested that Sa and Sb were only

weakly interconnected, as is the case; Sa influences _ only through the

trare state < 3,3 >, and _b does not af!e¢, Sa at allo Other identities

suggested that the subsystems would be h_rd to break up° If the
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reader doubts it, let him try_

This example illustrates a method which could z-ell be very

useful i_ the decomposition of complex systems, particularly in situa_

tions where the experimenter has very little idea as to which variables

can be naturally grouped° It is an all_t6o,=_ommon ocourrence in ._°S,_le_e

for an experimenter to be faced with a highly complex system in which

data is easy to obtain but hard to "make sense of"beca_e the experi-

menter does not know which variables are fur_ctionally "close" to which

others° Faced with the overwhelming complexity of a large system such

as a brain or an industrial society, the scientist may easily be defeated

by the data unless some sort of simplification is possible° In such a

case, the method outlined here may be a useful simplification since

it suggests a natural decomposition of hierarchical systems.

The transmission T(X i : X_) used in the method is a simple

form of what we might call information transfer° The next section

will take up in more detail the topic of information transfer°

4°4° Information transfer

Introduction

Frequently complex systems contain both sources of information

and passive components which merely react to information° In this

section we will comment on the information transfer in such systems,

after first exploring information processes in purely stochastic and

then in purely deterministic systems° The topic is important to the
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understanding of regulation in complex systems, since as we shall

indicate in the chapter on regulation, regulators often take the form of

deterministic subsystems accepting information and transforming it into

appropriate regulatory action.

4.4.1. Information in Markov processes

_X l, X2, X3, ..._ is a Markov chain in whichIf the process [ J

each variable _ takes values from the finite set X = {Xl, x2, .--, Xm] ,

it is natural to define the Markov super-variable _ = < X l, X 2, X 3, .°.>

corresponding to the process@ The transition probability matrix for X

is P = [PiJ]n,n:

,ij = Prob_Xk =xi I xk'l =xj_

We deal here with discrete, ergodic Markov processes only.

From the definition of the Markov property,

P(Xn*I I XI, X2' °'°, xn) = p(xn+I I xn) _ n _ i,

it follows that

HXI X2 xn(X n+l) = Hxn(X n+l) _ n _i.
, , ooo,

This is well known, but to the author's knowledge it is not well known

that for an ergodic process the two statements are actually equivalent.

Theorem IV.8

x°If the process , o o, , o.. is ergodic, then

the two statements below are equivalent.

(i) Wn _i, p(X n+l I XI, X2, -.., xn) = P( Xn+l _ xn),

Joe o, the process is Markoviano

(2) _n >.i, HXI ' X 2 xn(X n+l) = Hxn(xn+l)o
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Proof:

That (1) implies (2) is well established elsewherel3; we will

show that (2) implies (1)° The entropy equation implies the probability

equation when n = 1 for any ergodic process, Markovian or not° For

any n _ 2, suppose that

HXl,x2 xn(Xn+l)= _xn(xn+l)°
ooo,

By definition of conditional transmission, then,

Txn(<X I, X2, .oo, Xn-I _ : Xn+l) = 0

which by corollary III.4 implies that

P( XI, °°', xn-l, xn+l I xn) = P( xl ooo, xn-i I xn) P (Xn+l _ Xn)o

Multiplying by p(X n) gives

p(xl, ° , = ,xn) p(xn+l _xn)°. X n+l) P(X I, oo°

P(XI, -.o, xn) P( Xn+l I XI, --°, xn) = P( X1, °°°, xn) P (Xn+l. I xn)

Thus

P (xn+l I XI xn) = p(xn+l I Xn), ,.°) o

Q. E. D.

For ergodic processes, then statement (2) can be used as the

definition of the Markov property°

The entropy of and constraint within a finite segment of an

ergodic Markov chain are proportional to its length, and they obey the

following equations:

X2 ... Xn) = _xI(X 2) + T(X 1 : X 2)H(X I, , ,

T(xI :x2 : +..:xn) =n_(xI :xa)

Moreover any ergodic process satisfying either of the above for all

n _ i is necessarily Markovian. These assertions are proved in the

following:



Theorem IV._

I£ IX I, X2, ..., Xi, .oo_ is an ergodic process, then

the three statements below are all equivalent.

Proof:

(i) The process is Markovian°

(2) _n>I,H(X I,x 2 Xn) =, oo, _xl(x2)+ T(xI :x2)

(3) _n >l, T(xI : x2 : o.. : xn) = (n-l)T(xI : x2).

To show (i) _ (2): The identity

H(X I X2 .° Xn) _ H(X I) + (X2)
, , ° , _i + =_XI,x2(X3) + -.o

+ AH_l, X2 Xn-1 (Xn)

together with the Markov property imply that

H(X l, ..o, Xn) = H(X l) + Hxl(X2 ) + ..o + Hxn-l(Xn )

= H(X l) + (n-l) _i(x2)

= _xl(xa) + T(xI :xa)

for all n, so (i) =_ (2). To show (2) =_ (i), we assume (2) true

and show by induction on m that for all m >il, the following assertion

follows:

_Hxl, o.. xk(X k+l) = Hxk(Xk+I ) for all k, i_< k_ m_ o

The assertion is automatic for m = 1. For m = 2, we actually

have only to show that the assertion holds for k = 2° The statement

(2) above, with n = 3 and with liberal use of the property of station-

amity, yields

H(xl,x2,x3)= H(xI)+ Hxl(X2)+ H 2(x3).

144
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This, with the identity

H(xl,x2_x3)- _(xl)+ _xl(X2)+ _xlx2{×3)

establishes that

_xlx2(X3)= _(X31o

Thus the assertion is true for m = 2.

Next, suppose it true for m - l o To show it also true for m

requires only to prove it for k = mo Statement (2) and the property of

stationarity yield

H(X 1 Xm+l) = H(X l) + HX (X2 Hxm Hxm(, °'°, i ) + ooo + -I(X m) + xm+l)o

The following is an identity:

H(X 1 Xm+l) _=H(X l) + Hx (X2 HX1 _ _xm-1, °°', i ) + -oo + (Xm)
o¢ ¢

xm(X m+l )+ %1

The first m terms on the right of both equations are equal, term by

term (since the assertion is true for m ® i)o Consequently,

HXI oo°,Xm(Xm+l) = Hxm(Xm+I)o

We have just shown that if the assertion is true for m - i, it is also

true for m. Consequently, by induction it is true for all m _ I.

Therefore, statement (2) implies that for all m _ l,

HX1 X m(xm+l ) = %m (Xm+l)

which by theorem IVo8 establishes that the process is Markovian° Thus

(2)_ (1)o

To show (2) _ (3) is simple° We assume, for any n > i, that

(2) is true°

- H(x I, x2 oo xn) = ) ,_ ._, o , - r_xl(X2 T,xI x2)
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Adding nH(X i) to both sides, we get

 (xb- ...,xn)=n - ]- :

T(X 1 : X2 : °oo : Xn) ....(n - l) T(X 1 : _)

showing that (2) _ (3)° Reversing the process shows (3) _(2)o

Consequently, (1) _ (2) _=_ (3)_o

Q. Eo D°

This theorem and the one before provide four equivalent defini-

tions for ergodic Markov processes° The quantifier "for all n > i"

is essential, since non-Markovian processes can satisfy the criteria

for all n up to a finite No° For example, if one writes down in order

the binary equivalents of the series _O,i,2,oo.,15,O,1, ooo_,

{ 0000 0001 0010 .... iiii 0000 .... },

the resulting chain of O's and l's, which is certainly not F_rkovian,

satisfies all the criteria for n _ 4° In Tact one cannot conclude from

any test based on observations of finite length that a process is

Markovian, for one could never eliminate the possibility that the

process was cyclic and only part of a cycle had been observed°

From the preceeding theorem it follows immediately that if

is a Markov supervariable (and ergodic, the only case we have

considered), then

_(X) = HEl(X 2)

and the per-step memory constraint is

TL(%)= T(xl:X2)°

If <S> = < XI_ o.o_ > is a Markov super-variable with

components, the components need not themselves be Markov super-variables.



Obviously they maybe, for instance if the components are independent,

but the following transition matrix shows that they need not beo

1,1

1,2

< _.k+l _rk+l
A1 ,A2 > 2,1

2,2

Sample protocol:

time:

Xl:

,.
I,I 1,2 2,1 2,2

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1 2 3 4 5 6 ? 8

1 i 2 2 1 1 2 2

1 2 1 2 1 2 i 2

m

Here <S> and X2 are Markovian but XI is not.

Whenever one or more components are not Markovian, however,

there must be a constraint between the components if the whole is to be

Markoviano

Theorem IVolO

Let _ = I_l, X_' °°°, _M} and let <S > be Markoviano

Then IT(S)= 01 _IW X--jmS, X--jis Markoviano}

Proof:

Suppose T(S) = O. By corollary 111o2, T(S i) = 0 for all i and

consequently the system memory constraint is the sum of the individual

memory constraints:

M

T(<SI> : <S2> : o.o : <sn>) =

j=l
ooo:

147



148

If <S > is Markov,
M
z 4:---:
j=l

Therefore

T(x :x : ...:xS)- (n- l)T(x :x ) = o.
j=l

For every j, the quantity in brackets is nonegativeo To see this, we

expand both parts by identities, and use the stationary property

freely:

[ HXI,x2(X3_(xI.: o..:_)_ (n- I)H(Xl)- Hl(X2)+ )
J

+"'°+_xlx_ l(xn)]
_,ooo,X n-

(n - I)T(X I : X2) ---(n - I)H(X I) - [_I(X 2) + _2(X 3)

+ o.o + Hxn_l(Xn) ]

By subtracting the second identity from the first, we obtain on the

right a sum of transmissions, for

-_xl,x2,ooo,xk(xk+l)+_xk(Xk+l)= _xk<<xl, .o.,xk-1_: xk+l)

A sum of nonnegative quantities is zero only if each term is zero;

consequently for every j _ M,

T(X : : ooo : X = (n - I)T(X : Xj)

and each Xj is Markovian, by theorem IVo9o

Q. Eo D.
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4°4.2° Information in state-determined systems

The sequence of states in a state-determined system 6 with

represents a special case of a Markov process, in which all the condi-

tional probabilities are either 0 or lo The system's mapping, f, maps

the set of states into itself; given the present state s_ in S, the

probability that the next state will be f (s_) is lo This of course
r

means that H,si> (_ si+l>) = 0 for all i and consequently that

H(<sl>, <S 2 >, .oo_ <sn>) =H(<SI_)o

We assume the system to have a finite number of states, so that

H(< S1 >) is finite° The w and > marks are actually redundant in H

and T expressions and will be omitted henceforth. In the notation of

section 4.3,

x n) = H(sl)

The uncertainty in a sequence of length n is precisely the uncertainty

as to the initial state of the sequence° The per_step entropy of the

sequence (in the limit) is consequently zero, which is to say that the

sequence carries no information (except information about the initial

state):

HL( :£ ) = lim _ = Oo
n÷_ n

m

The components Xj carry no information either, in the limit°

In fact any deterministic sequence has a per-step entropy of zero@

Any state-determined system (with a finite number of states)

will eventually fall into a cycle of behavior 6, _nd the components,
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if the state is compound, must then fall into cycles also. The behavior

of each component is then deterministic and predictable without reference

to any other component, so that when < S • is state-determined and

finite,

HL(x ) =0,

HL(%j)= 0 forallj M,

TL(%I :%2: "'" :%M ) = 0.

Although the observation is somewhat frivolous and not very

meaningful, it could be pointed out that since T (%1: %2:°'°:/M ) 0

always, any part of a state-determined system, when viewed as a channel

between two other parts, has a channel capacity of zero. The Markov

super-variable < S-----_-suggested by the state-sequence is not necessarily

ergodic nor even stationary; in fact the sequence of entropies H(SI),

H(S2), ..., H(si), ooo is monotonic_lly decreasing, since

H(si S i+l) _ H(S i) + Hsi(Si+I )

H(S i, Si+l) __=H<S i+l) + Hsi+I(_ )

and consequently

H(S i) - H(S i+l) _Hsi+I(Si ) _ _i(S i+l)

= Hsi+l(Si ) _ O.

Since the H(S i) are monotonically decreasing, so are the

T(S i : si+l), for

T(si : si+l) m H(S i+l) ® H i(si+l )

= H(si+I)o



The constraint in the sequence < $I> is the strongest mathematically

possible:

T(S1. S2
r_

: Sn) = _ H(S i) _ [H(S i)
i=l

n

= _ H(S i )o

i--2

+ Hsi(S2 S3, , oo°, Sn

simple form and are also monotonically decreasing in magnitude:

Q(S i+l, S i+2, o,oo Si+n) = (_l) n H(S i+n)o

For n = 3

To establish this, we let i = 0 for convenience and use induction on no

Q(sI s2, s3)=-,_l_s2 : s3) - r(s2 : s3)
_S °

= Hsl(S3 ) -HSIs2(S3 ) - H(S 3) + HS2($3 )

In a state-determined system, the entropy of any Sn conditional on Sk,

with k < n, is zero; given the state at any time k, one can calculate

with no uncertainty what the state will be at any later time° There-

fore all the subscripted terms above are zero and

Q(sI, s2, s3) =-H(S3)o

Now we suppose that Q(S I, S2, ooo, Sn) = (®I)nH(S n) or, more conveniently

for our purposes, that Q(S 2, S3 Sn+l) = (-I)nH(S n+l) a mere

relabeling° From the iterative definition of Q,

Q(sl, s2, o.o,sn+l) _._.Qsl(S2, o°o_sn+l) _ Q(s2_ ooo,sn+l)o

The subscripted term could be expanded into a sum of entropy terms, but

the subscript of each would contain S1 and consequently all would be

zero@ By inspection, then Qsl(S 2, ooo, Sn+l) = 0 and
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The interactions Q(S i+l, S i+2 oo Si_)o , take a particularly



= Sn+l )Q(Sl,s 2, ...,sn+l) _Q(S2, ...,

= - [(-l)n H(sn+I) ]

= (_l)n+l H(sn+l).

Therefore, by induction we conclude that for all n _ 3,

.o. SnQ(SI, , ) = (_l)n H(Sn)o

Q. Eo D.

If _S> = <X I, X2, ..., XM> is a state-determined Markov

super-variable with components, the components need not themselves be

state-determinedo The example in the last section, with protocol as

follows,

time: i 2 3 4 5 6 7 8

i i 2 2 i i 2 2

S

X2: i 2 i 2 i 2 i 2

illustrates this; < S • and XZ are state-determined but X I is not.

In an analogy to theorem IVolO, however, we can prove that if

< S > is state-determined while some component X is not, then there

must be a constraint between the components which "accounts" for the

fact.

Theorem IVoll

Let S = , , ..o, and let <S >be state-

determined. Then

{T(_) = 0_ _ iV Xj _ S, Xj is state-determined_

Proof:

If <S > is state determined, then Hsi(Si+l) = 0 for all i _io
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Consequently for all i _ i,

H(S i+l) - T(S i : S i+l) = O°
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It was shownearlier that whenTQS} = O, the system memoryconstraint

equals the sumof the memoryconstraints for the individual variables°

Thus for all i _ i,
M

H(si+l)Z T(X: +!)--Oo
j=l

It was also shown, in corollary IIio2, that T(S') = 0 implies T(S i) = 0

for all i _ io This in turn implies that

M

H(S i+l) = _ H(Z_+I)o
j=l

Therefore we conclude that for all i _ l,

M

Z [.,.i+l T .i xi+l) =
j=l nt,zj ) - (Xj : ,_ ] 0

M

j=l

=0o

This sum of non-negative quantities is zero if and only if for every

j _ M, and for all i _ i,

i+l_i(x_ )=o,
Aj

that is, if and only if each Xj is state-determinedo

Q° Eo Do

Having considered Markov processes and state=determined systems,

we turn in the following section to systems which are part random and

part deterministic: systems involving both Markov sources and finite

state machines°

4___4o_o Information transfer through finite®state machines

Any arbitrarily complex network involving finite®state machines

(machines-with-input, mappers, and automata) and Markov sources may
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be viewed as a single Moore automaton driven by a single Markov source,

both the state of the source and the state of the automaton having,

in general, several components (see Figure 28). Although it is not

always advantageous to view a network this way, the fact that it is

possible makesit evident that we should understand the information

transfer in this paradigm case before attempting more complex cases°

The understanding of this simple case is also essential to the under-

standing of later sections on regulation.

The fundamental information quantity associated with any

finite-state machine is its channel capacity° The capacity of a

mapper is log M, where M is the numberof distinct values in the range

of the mapping. The channel capacity of a MWIis log Wo, with Wo as

defined by Shannon5o And section 3°6 of this report has provided a

way to calculate the channel capacity of an automaton° That section

also provided a procedure for constructing a source which maximizes

TL(X : _), and therefore also HL(_), at the capacity.

It is interesting and useful to note that if the output (ioeo,

state) sequence of a machine-with_input has the highest possible

limit-entropy (or just "entropy", for this discussion), then the

sequence is a Markov chain° Thus if the output is not Markov, one

may be sure that the MWI is not operating at capacityo In the case

of an information-preserving _ (a MWI for which one can deduce, by

observing any allowable output sequence, exactly which input sequence

caused it) this is almost obvious, since the input must be zero-order

Markov to realize capacity in that case° That the output must be

Markov in the more general case follows from the fact that if a
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Markov ISource

I
_ Mapper I

f

Figure 28°
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distribution P(ZN I zl, Z2, ..., ZN-I) is to maximize the output entropy,

it must makeall allowable state sequences of length N (as N goes to

infinity) equally likely; that fact actually specifies the distribution,

which Shannonhas shownis Markov5o From this point of view, a MWI

operating at capacity is a device for transforming an input which is

not Markovian (in general) into an output which i._So

Wewill consider now the problem of finding howmuch information

the output sequencecarries when driven by a Markov source of known

characteristics. Weassumethat we are given a state-transition matrix

= -J_FPi_7 for a Markov source, and mappings fo and go for the

MWIand mapper;

fo:

go:

X x Wo --_ wo

W o --> Y.

The situation is represented in Figure 29°

If the input to a MWI is Markov, the state®transition sequence

is only Markov under exceptional conditions, and information is

usually lost in the MWI (that is, one cannot usually deduce what the

input sequence was from the state sequence alone)° Our job of finding

the output entropy is considerably simplified if we break the MWI into

two parts - a new MWI which does not lose information, and a mapper

which does, as suggested in Figure 30o The new MWI is constructed so

that for every zj in Z, fmaps X x zj one=to-one onto Z, and gl is

constructed so that the sequence W o is the same as with the original

MWI. This amounts to the introduction of extra states in the MWI, so

as to make Z a noiseless coding of X, and the subsequent elimination of

the extra states by an information_losing mapping° For example, if
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Figure 29o
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Figure 30°



fo is given as

X

158

fo

1

2

3

1 2

1 2

3 2

2 1

W o

3 4

4 3

4 2

k i wg

with the multiple entries (which make fo information-losing) underlined,

we could construct f and gl as follows:

X

W
0

1 2 3 4 5 6 ?

i 2 4 3 2 3 3

3 5 6 2 5 2 2

2 i 7 i i i i Wg

gl

W o

i 2 3 4 5 6 7

i 2 3 4 2 4 4

Z

When this done, _ is a second-order Markov process,

P(zi+l I ZI' "'°' zi-l' zi) : P(zi+l I zi-I Zi) _ i _ 2,

since given Zi-I and Zi, one can deduce Xi-1 , and the further uncer-

tainty about Zi+l is exactly the further uncertainty about Xi. To find

the output entropy, then, we need only to consider how mapping a
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second-order Markov process by an information-losing mapping, (gogl),

changes the entropy° By a change of variables,

÷ = < Z i_l, Zi>

V i = <yi-1, yi >

the problem is simplified still further, since if Z is second®order

Markov, _ is [first®order] Markovo

Thus by successive steps we can reduce the original problem to

the problem of finding the output entropy which results when a Markov

input sequence X is mapped by a convergent mapping _ into a non-

Markov output sequence Yo

( Markov_ X __ [non-Markov_input J __ _ _output

The exact solution to this problem is not known, but for ergodic

chains an approximate answer can be obtained from the inequalities

_l, y2 ...yn(r_+I)_ HL(¥)_ _i y2,ooo,yn(r_+l)

in which the outside quantities converge monotonically to HL(_) as n

goes to infinityl4o

The fact that a finite-state machine with Markov input usually

has a non-Markov output does not in anyway imply that information is

necessarily losto Indeed, it is possible to have an arbitrarily long

chain of finite-state machines, for example MWI's (see Figure 31),

and as long as all of them are information®preserving, HL(_n) will

equal HL(_) even though _n will be (n + l)-order Markov in general.

An information-preserving MWI can be viewed as a coding device which
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I Mar kovSource
f

Figure 31o
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encodes the input sequence into an output sequence in such a way that

the span of intersymbol constraints is lengthened°

In fact, most finite-state machines have a tendency to increase

the span of intersymbol constraints as they _transform '_a sequence

from input to output° By this is meant that if one must take n

sequential symbols into account to get a reasonably good approximation

for the input entropy,

Hxi+I xi+n®l(xi+n)

HL (X)

-1 <@ << i

then one must usually take more than n symbols into account to get an

equally good approximation for output entropy° Finite-state machines

tend to "spread out" the information, to put it loosely but pictu-

resquely. This is, of course, only a tendency and not a law, the

notable exception being when the input is matched to a MWI so as to

realize the channel capacity; in that case quite the opposite takes

place, for the output ends up Markov althcugh the input seldom iSo

In the light of Birch's results 14, and in view of the fact

that when a Markov sequence is mapped by a convergent mapping the result

is almost never a Markov sequence, it is rather surprising that a

mapper may sometimes reduce the span of intersymbol constraints just as

a MWI can° The example of section 3°6 shows this clearly; there the

MNI part of the automaton transformed a non-Markov input sequence into

a second-order Markov state sequence, and the mapper transformed that

a [first-order] Markov output sequence°further into
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4.4.4. Information transfer in networks of finite-state machines

The fact that the span of intersymbol constraints tends to

increase as a message is passed through one or more finite-state

machines greatly complicates the analysis of information transfer in

complex networks of such machines, unless the network is viewed as a

single automaton. One might think that the situation would become

completely unmanageable in networks with feedback, for example the

classic configuration shown in Figure 32. In this network, the input

sequence is combined, by way of the mappings, with various vestiges of

its own past; one would expect that the span of intersymbol constraints

in the output sequence would be immense° In fact, however, if the MWI

denoted by f2 is operating at its own capacity (or close to it), the

output sequence is Markov (or nearly so). We shall have more to say on

this topic in later sections on regulation, and here it will suffice to

point out that when an input sequence is "processed" by a network of

finite state machines, what results need not necessarily have a larger

span of constraints than the input°

We can deduce several inequalities relating the input, state,

and output entropies for an automaton (see Figure 33)°

The inequalities all derive from various decompositions of

H( 2 n); for one,

H(_ n)_ H(xl,X2,°'°,xn,zl,Z2'°'°'zn'yl,_, ...,r_)

(xI xn) Hx xn(Z1 zn)H , °.', + 1 , "'°,
, °°°,

+ Hxl n, Z1 (y1 o yn)., ..., X , o.., Zn ' °" '
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Input

Sequence
-- ( Output )
"- Sequence

Figure 32°

Automaton

Figure 33°



If XI . Xn ZI, .., and are known, there is nouncertainty about

Z1 Zn Z1 Zn, ..., . And if , ..., are knownthere is no uncertainty

about y1 yn. Consequently
oo.,

H(_ n)= H(XI'"""'xn)+ Hxl Xn(zl)"
, °oo,

Another expansion of H( _ n) is

H(_ ) = _(zI, ...,zn)+ Hzl
n

•'', Zn(xl' .-., X n)

+ _zI z xI x_(rl,...,yn)°
, "'', _n , , -°@,
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The last term is zero as stated before. Putting the two expansions

for H( 2 n) together, we obtain

H(ZI zn)= H(X1 Xn)+Hxl (l), ..., , ..., ,...,X n Z

_zl (xl'" xn)
- ,Z n ". •,@.o

The negative term is the uncertainty about the input sequence which

remains after one observes the state sequence. Dropping it gives

H(E l, ..., Zn) _ H(X I, ..., Xn) + HXI xn(zl)
, °0.,

or, a less strict inequality,

_(zI, ...,zn) _ _(xI, ...,xn)+ H(zl).

Of course since H(Z I, ..., Zn, yl, o--, yn) = H(Z I, ..., zn),

H(Z I, .-,, Zn, yl, -°o, yn) _ H(X I, .-., X n) + H(ZI).

In the limit, as n _ oo ,

HL(_) _ HL(< Z,Y >) = HE(z) _ HL(_).

The entropy of a sequence, as it is transformed to state-sequence and

output-sequence, can only fall; if one is more uncertain as to the

output than the input (for a finite sequence) this surplus uncertainty

is only due to uncertainty about the initial state of the network,
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and this finite uncertainty is relatively unimportant in the limit° In

other words, finite state machines cannot generate ir_formation_ they

can only tr_usform it or lose it o

Generalizing from the automaton to a network of intercor_nected

finite state machines, this has the folicwing co_sequer_ces:

Theorem IVoL9

Let SL = Xl, %, °° °, Xm be a set of supervariables

which are inputs to a network of finite state machines_ and let

the state mud output supervariables for the machines in that

network constitute the set Sv = , , °oo, Vn o Then for

any n _ l,

oo, .oo._ _[_I_

(sI Sx_)
- HSvl, °°°9 --V

(b) H(SvI,...,sn) <.H(Sx_, .o°,Sx_)+ H(Sv_)o

(c) _(_v) _-_(_x)-

The proof is a trivial extension of the foregoing argument. The

theorem has some immediate consequences ° For one, if Sj is any subset

of iv, then H(S I, ooo, S_) _ H(SvI_ ooo, S_) and HL([j)_< HL([v) , so

the entropy of any subset of the machine's supervariables is bounded

by the same quautities as the whole° -_is in turn implies that the

limit-transmission between any k disjoint subsets of iv satisfies the

inequality

i : : °°° : Svk) -_ (k-l) °

Limit-interactions are also bounded; all n-.th order interactions (those
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with N variables in the argument) are boundedby _ 2N-2HL([x)- There

are, of course, analogous limits for the non-limit quantities.

Through the preceeding inequalities, the incoming entropy limits

all information quantities relevant to the study of the network. We

have in the theorem another verification that in a network of state-

determined machines, with no information sources pumping in entropy,

all limit-entropies, limit-transmissions, and limit-interactions are

zero.

Notice that the theorem covers the nonergodic case (in state-

ments (a) and (b)) as well as the ergodico

The transmission between two complementary parts (whose union

is _v) is bounded by HL(_in)o This fact will be important later when

we consider networks decomposable into a regulator and a regulated

part; the transmission between these parts is a crucial quantity°

An application of the cut set theorem of Elias et al lO leads

to a possibly smaller upper bound for the entropy of any subset _k of

S--v. Suppose that a network of finite state machines and information

sources (not necessarily Markov) is specified by giving all the mappings,

all the interconnections between the parts, and the entropies of all

sources. The channel capacities of all the finite state machines can be

found, and a graph of the type shown in Figure 34 can be drawn° The

graph is essentially a diagram of immediate effects, with the addition

of the sources X% and arrows showing which of the V% in SL they affect.

Each line leaving a Vj is labeled with the channel capacity of the

associated machine, and each line leaving an Xi is labeled with the

source entropy° We assume for the time being that the graph is connected°



167

3

2 2

Figure 34.
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A cut set on this graph is a set of arrows such that if all

arrows were deleted, the graph would fall into two or more unconnected

parts. A simple cut set is a cut set such that if any arrow is removed,

what remains is not a cut set. For example, the cut shown by a dotted

line on Figure 34 prescribes the simple cut set A:

A = {i -->4, 4 --_ 3, 5 -->2, 3-->5, 3 --_6_.

With each set S--k¢_v there is associated a family of simple

cut sets separating Sx from Sk; the value of each simple cut set in

the Sk family is the sum of the numbers on arrows crossing the cut

in the direction of Sk° If Sk = the set A above is in the

_k family, and its value is 4 + 2 + 2 = 8.

By slightly reinterpreting the cut set theorem, we conclude

that the channel capacity from Sx to Sk cannot exceed the minimum

value among all simple cut sets in the _k family. With S-k = _ _4' _5_

the minimum value is 5, from the cut set B:

B={0-->1,2-->3,4-_3,3-_5,5-->6_.

It follows that the limit-entropy of any variable or set of

variables cannot exceed the minimum value among all simple cut sets

separating it from S--x;for the example HL(_k ) _ 5.

We assumed above that the graph was connected. If it is not

connected the same results hold; we need only redefine a cut set as a

set of arrows such that their deletion separates the graph into more

disconnected subgraphs than originally existed, and so on. If the

original graph is not connected, and if we choose two variables in

separate parts, it is plausible to conjecture that the transmission

between them must be zero° This is indeed the case if the source



169

driving the one part is independent of the so_'ce driving the other°

For with the prototype graph of Figure 35, we have HL(_l_ %) = _'l),

HLc_, _2) = HL(_), and _(Xl, VI_ _, V2) = _(Xl, X2)° Consequently

by corollary IIIo2, this implies TI(V_ _ _) = Ooand

Moreover it is reasonable to expect that if there is no chain

of arrows leading either from Vi to Vj or from Vj to Vi in a connected

graph, then TL(v i : %) = Oo But plausible or not, this conjecture

is false, and to see that one need only consider the graph of Figure 36,

in which VI and V2 are identical machines subject to the same input:

_i and %' being identical, behave identically, and TL(_I _ %) = H(VI)O

We shall have more to say later about this important situation, with

regard to regulation; for the moment it serves to illustrate the fact

that there may be high transmission between two parts which have no

direct effect on another via mappings or even via mediating variables°

With this background on information transfer in networks,

we turn now to the subjects of regulation and of information transfer

in regulatory networks°
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Figure 36.
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Introd_ti_

The preceedlng chapters have been concerned with the relevance

of information theory to complex systems in general_ in this chapter

we specialize to those systems in which one part is trying to regulate

another part. Section 5.1 contains general remarks on regulation, and

shows in a qualitative way the importance of information to successful

regulation. Section 5.2 quantifies and proves more rigorously the

results of the preceeding section_ and section 5°3 provides an

information analysis of three basic regulatory schemes. The paper is

concluded with some brief_ general remarks on regulation in section 5.4.

_.i. Information requirements for regulation

Up to this point, we have mentioned the topic of regulation

only in passimg; we have given several resulte showing how the methods

of information theory are useful for the understanding of complex

systems, without specifying any particular type of system. We will

now turn attention specifically to complex systems in which regulation

is involved - where one part of the system can be thought of as

attempting to regulate some other part. By this we will mean that

the regulator, which we will denote for brevity by R, and the part of

the system being regulated against, X_ Jointly determine an outcome, Z,

and that the goal of the regulator is to force the outcome (or out-
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comes, if the process is an ongoing one) to be favorable to R, by

[pre-established] criterion. The regulator tries to get itssome own

way, in other words, in an outcome in which it is only one of the

determining factors. The situation is represented in Figure 37.

We will impose few constraints on this very general formulation_

leaving specialization for later. In particular we will leave open

the questions of what sort of machinery is in the boxes marked X and

R in the diagram above_ and of what factors affect X and R, as

indicated by the entrant arrows. We will also leave open the question

of whether X is passive (as in the case of an automobile being

regulated by a human pilot) or antagonistic to R (as in a game-

playing situation in which X is trying to regulate R, Just as R is

trying to regulate X). The only constraints we will impose are as

follows:

I. R# X, and Z are variables taking values from the sets

R : _rl, r2_ ..o, rm_ _ X : _Xl_ x2_ ..._ Xn_ , and

Z = _Zl_ z2_ ..., Zp_ respectively.

2. The system operates on a discrete time basis.

3. The outcome Is determined by R and X through a mapping fz"

That is_

fz : X x R --_Z.

Seen in this general formulation, regulation is a pervasive feature

of everyday llfe, ranging from simple acts such as taking an aspirin

to ward off a cold to highly complex phenomena such as government

regulation of interstate commerce. With several examples we will
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I Controlled

RegulatorR

"_Oeterminer of 1_ (Outcome)

Figure 37°
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next illustrate different forms regulation can take.

One basic type of regulation is essentially an attempt on R's

part to destroy X's ability to affect Z, by cutting off the effect-

path from X to Z - to destroy the channel from X to Z, as we might

put it. This type of regulation is usually a single-occurrence

phenomenon, in which R takes one action to destroy the channel and

thereafter need take no further action. The installation of stop

signs at a busy intersection to minimize the probability of accidents

there, and the deposit of a dime in a parking meter to regulate

against ticket-issuing policemen, are examples. Examples of single-

occurrence regulation in which the goal is preservation of constancy

are: (i) assuring temperature constancy of an object by dropping it

in the bottom of the ocean, (2) assuring constancy of room temperature

by installing an automatic air conditioner, and (3) stabilizing the

political climate in a totalitarian regime by imposing a news black-

out on the press and radio. All of these examples illustrate how R

can regulate against unwanted disturbances by incapacitating the

mechanisms by which they would otherwise affect the outcome.

Regulation of quite a different type, and a type more interesting

for this study, takes place when R cannot block the channel from X

to Z but can only attempt to counteract the effect of X by appropriate

counteraction of its own. This type of regulation is usually more

dynamic than the type Just mentioned. The goal of R can take the

form of maximizing a probability, as when a doctor attempts to

maximize the probability of "Patient Lives" when regulating against

diseases, or when a fencer tries to maximize the probability of
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"Avoids Being Hit" when regu!at_g aga_st his opponent. The goal

can also take the form of preservati,_ of constancy_ as in (i) a

thermostat malmtaining constant room temperature despite chauglug

weather_ etco_ (2) the driver of an automobile maintaining a constant

speed despite hills, winds_ and the like_ and (3) in an open society,

a government countering hostile propaganda with propaganda of its own,

to preserve domestic tramquilltye

The distinction drawn here between _ingle-occurrence regulation

and dynamic regulation_ while useful_ is somewhat artificial and

arbitrary. For if a regulator takes a sequence of actlons_ the

sequence may be viewed as many actions in an ongoing, dynamic process,

or on the other hand as one choice of strategy or one traJectory_ The

distinction between the goals of maximizing a probability or preserving

constancy is also arbitrary_ nevertheless it is useful.

About the case of single-occurrence regulation there is not

much to be said other than that if R select_ one action out of a Bet

of possible actions, and if that action is appropriate {i.e., is

successful) while the others are not, then R needs information to

make the selection° If a regulator selects appropriately to a degree

better than chance_ it must do so on the basis of information about

which choice is appropriate. To _elect one action from a set of N

possible actions_ when all are equally attractive_ requires log

N bits of information.

If the selection is recurrent, so that the concepts of informa-

tion theory become meaningful_ much more can be said° We will deal

henceforth with this class of "dynamic" regulators_ which take on
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values as steps in a continuing process. Some regulators of this type

deserve only brief mention; these are the regulators which take

several actions (or values) but do so in an autonomous, deterministic

way, such as the traffic lights which regulate traffic flow by their

repeated cycles of red and green. We will be concerned, on the other

hand, with regulators which must take in information and act

appropriately on it in order to satisfy their goal criteria. Among

situations which we normally regard as involving regulation, this

situation is by far the predominant one.

We characterize the regulatory situation, then, as one in

which to achieve its goal the regulator must (i) take in information

by sensing some variables outside itself, (2) select from its

repertoire of possible actions the one which is appropriate for

attaining the goal, and (3) take that action. The process of

regulation breaks up naturally into these three components, and the

quality of regulation is governed by all three (of which we shall

have more to say quantitatively later).

Information plays an important role in all of these steps; this

is clear in the example of the fencer. To protect himself from his

opponent, he must (i) take in visual information about his opponent's

actions, (2) call on his knowledge and past training to select

appropriate countermoves, and (3) perform the necessary n_neuvers,

which serve as input information for the opponent. Clearly the

fencer's regulatory ability is dependent on all three ; if his input

channel capacity is impaired (by dim lighting, poor eyesight, etc.),

or if his selection is impaired (by lack of training, or drug-induced
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impaired (by fatigue or physical weakness), he will be no match for

an opponent not so disabled.

Similarly in the example of an automobile driver; when rain or

fog cuts down the necessary input information_ or when selection is

impaired by fatigue, or when the capability for maneuvers i_ reduced

by ice on the highways, the instinctive reaction is to slow down the

vehicle in recognition of the fact that one's ability to regulate

effectively is reduced.

The main factors opposing successful regulation, then, can be

characterized as

(1) ignorance, or lack of input channel capacity,

(2) lack of insight, or lack of "computational" channel

capaclty transforming input informat ion into

appropriate outputs,

(S) impotence, or inability to influence the outcome

successfully due to a lack of optlons_ i.e. lack of

output channel capacity.

In the next section we will _nve_tigate regulation in greater

depth and attempt to quantify the qualitative assertion that infor-

mation is of primary importance in any analysis of regulation_

_7_
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5.2. Quantitative mnal_sis of regulation

5.2.1. Re_,,1ation when the $_al is to maximize a probability

We consider in this section and the next a mapping fzl : X x R-*

ZI and a continuing process (either finite or infinite in length) in

which X and R take values at time _ and fzl determines the outcome

at time _. For example, fzl might be as follows:

R

fzI

i

2

3

X

i 2 S 4

i 2 3 i

5 1 2 4

3 5 i 3 (ZI )

Suppose that R's goal is to force the outcome to be "i". We

can simplify the problem facing R by mapping ZI into Z by the rule:

Z --i if ZI is an outcome acceptable to R, Z = 0 otherwise_ This

gives the following mapping fz : X x R -_ Z.

R

fz

i

2

3

X

1 2 3 4

i 0 0 i

0 i 0 0

0 0 i 0 (z)

We will assume in this section that the distribution of X's choices

is fixed and independent of R_ that is, we assume that N(X) or P(X)

is given. Under this assumption, what can be said about R's ability



to force a desirable outcome? For concreteness, supp©se X takes

its four values equiprobably; then R can force a ';2 half the time by

perpetually taking the value R - i_ in fact if R chooses values

independently of X, so that T(X _ R) : 02 it is easy to show that

this is the best R can do. To show thi_ we define the foilowing_

P = Prob _Z = i_

_ o_o__z__ _e__hoooo_oo_ _ _o__ _

m Q }P* =max Pi
i=l

r* = the numerically lowest value in the

oot I }.
The definition of r* is a bit peculiar in order to single out only

one of the set of "best" values_

Theorem V. 1

If fz : X x R--_Z where Z : 1 implies an outcome

favorable to R and Z = 0 implies an outcome not favorable_

and if P(X) is fixed and T(X : R) : O, then the expectation of

a favorable outcome cannot exceed P*.

Proof:

P =
P(xj_ri)

<xj,r i> _ f_l (1)

179

P(ri) P(xj )

xj,ri> _ fzI (I)
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P(rl) " Pi

i-i
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m

_ P(r i) • p* _< P*

i_l

Equalities are established if P(r*) = i.

Q. E. D.

The theorem says that if R is to choose values independent of

X's values, it can do no better than to perpetually choose the value

r*. Thus if P is to exceed P*, R must take values which are correlated

with those of X; i.e., there must be transmission between X and R.

Single-occurrence regulation corresponds to the choice of R_ = r*

for all _ , and if dynamic regulation is to improve on that, there

must be a channel linking X and R.

We must next construct a measure for the regulation imposed

by R. We denote the measure by Pl" The simplest measure would be

P1 = (P " P*); however, this measure would not differentiate between

one regulator raising the probability of a favorable outcome from

0.8 to 1.O, and another raising it from 0.05 to 0.25. Intuitively

we feel that the latter has attained a more spectacular success,

P
and that P1 should be proportional to log-_. As a compromise

between these contradictory demands, we define P1 as follows:

logP
When P* = O, that is when no values of R can lead to a favorable

outcome, the whole notion of regulation becomes absurd and _I is un-

defined.



In the example above_ R can guarantee the desired outcome_

that is, can make P = i_ by selecting its values according to the

following mapping:

X _ l 2 3 4

I
R _ i 2 3 i

In this case, P = l, P* = 0.5, _l- 0.5, and T(X : R) = 1.5 bits.

With the above definition of _l' it follows immediately from

theorem V.1 that T(X : R)= 0 implies _l _ O. Canal and T(X : R) be

put in any other quantitative relation? We propose the following:

Conjecture :

The conjecture can be supported as follows. When one tries to

construct an fz and a distribution N(X,R) for which the ratio

_l/T(X :R) (or #l/T) is as large as possible, it soon appears_

through trial and error, that the ratio is largest when both #l and

T are very small. T is made small by making the columns of N(X,R)

nearly proportional. The mapping most favorable to regulation under

these conditions is apparently an fz of the following form_

f
Z

m-1

m

R

1

2

X

i 2 3 -.. m-i m

1 0 0 O 0

0 1 0 O 0

0 0 1 0 0

0 0 0 1

0 0 0 0

18i
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since in this case P* can be made small while P can be made considerably

larger with only a small T(X : R). The assignment N(X,R), with

r

VI 4g(m - i) if X : R; E((¢

1
--_ -_ irx_R
m

has the following characteristics:

(i) The columns are nearly proportional, suggesting a

min_l _(x :_).

(2) P* is as small as it can be with one 1 in each column

of fz, and (P - P*) is proportional to E.

With this fz and this N(X,R), PI is computed as follows:

1 m(m-l) &
I1 (m-l) ]P -- m -2 +

AJA

p,= 1
m

_i = m(m - I) E log

1
@ m(m-l)6

1

m

: m(m - l) £ log [i+ m2(m - l)a]

For very small _

_l _ m(m - l) c[mR(m - 1) m]

= m3(m - 1)2£2 log e.

log e

The transmission is computed as follows.

: log m+ _ (+ + (m-1)mg) log (+ + (m-1)me)

÷ (,,,-l) log



The ratio _I/T is

PI
T
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log m _ i_g m T

@ 1-!-m{[1 + (m_l)m 2 _[(m-i)m2E - ½(m-l)2m4_2,°.._

½(m-1)m42 loge.

. m3(m.l)2 _2 io_ e

(m_i)m4 _ log e

=2( m-1 ).
m

Consequently_pl/T is less than 2 for any m, If this distribut±on

is indeed the type that maximizes _/T# as there is good reasoz_ to

believe 3 then _l _ 2 T(X : R) always.

The transmission between X and R is thu_ seen to be an upper

bound for regulation when the goal is maximizing the probability of a

particular outcome or set of outcomes; if the goal is minimization

of a probability_ the same sort of analysis holds, for to minimize

the probability that an event will occur is of course the same as

to maximize the probability that it will not.

We will next consider regulation when the goal of R is to

preserve constancy.

5.2.2. Regulation when the _oal is to maintain constancy

In many situations involving regulation; the goal of the

regulator is to preserve a variable or variables at as nearly

a constant value as possible. The vast majority of the homeo-

static mechanisms occurring in plants and animals are of this



type, of course; for example, the mechanismsmaintaining temperature

and blood sugar levels in humans, or of moisture content in plants.

Manymechanical regulators, such as thermostats, automatic volume

controls, and automatic airplane pilots, ate also of this type.

As has been pointed out by Ashby6, regulation in such cases

can frequently be viewed as blocking the transfer of information from

X to Z. X takes various actions which would showup as variations in

Z, were it not for appropriate counter-actions taken by R. If R is

completely successful, variations in Z are completely eliminated, with

the result that an observer of Z would obt_ain no information at all

about the values taken by X or R. The goal of R, maintainence of con-

stancy in Z, can thus also be seen as the suppression of entropy at

the output.

Wecan consequently define a new measurefor regulation, p,

based on howmuchoutput entropy is eliminated by R's actions. To

meaningfully comparethe output entropy with R acting and R not acting

(R fixed at somevalue, in other words) it is necessary to assume, for

this section and most of the next, that X is passive and does not

change its actions according to howR behaves. Wewill consider, then,

situations in which the distributions for X are fixed, the process is

a continuing one (finite or infinite)# and the outcome at time _ is

determined by X and R at time x _ fz _ X x R _ Z. For example,

fz might be as follows:

R

fz

X

1 2 3 4

1 2 3 1

5 1 2 4

3 5 1 3 (z)

184



185

Suppose X takes its values independently and equiprobably, so

that P(xi) = 1/4, 1 _i _ 4. What will be the output entropy if R is

fixed at some particular value? If R_ = 1 for all T_ the outcomes

1,2, and 3 will occur in the frequency ratios 2 : 1 : l_ and the out-

put entropy will be

_(z)= [2/4log2/4÷ 1/4_og1/4+ _/4log1/4] _ 15 bits.

Similarly with R _ = 2 for all _ we obtain H2(Z) = 2.0 bits, and

with R _ = 3 for all _ # we obtain H3(Z) = 1.5 bits. The regulator

can hold the output entropy to 1.5 bits by persistently taking values

lot3.

Now we ask, by how much further can R decrease the entropy

through appropriate actions? Clearly the output entropy, H(Z), can

be dropped to zero if R takes its values in accordance with this mapping:

X _ i 2 3 4

R _ i 2 3 i

If regulation is measured by this further decrease in entropy,

it comes to 1.5 bits. The regulator_ by selecting values which are

appropriately matched with those of X, can succeed in maintaining the

output constant.

Let us define the following_

= HCz)

Hi = H(Z) under the condition { R _

m { }
H* = rain Hi

i=l

r* = the numerically lowest ri in the set

_ =H*-H.

= ri for all -c_ .

_ri I Hi =H*_ •



, then, is a measure of the amount of output entropy which

R suppresses by acting, beyond the amountwhich it could suppress by

perpetually taking the value r*. Wewill proceed next to expand the
^

expression H* - H, to show the relation of p to T(R : X).

We will denote with a superscript * those quantities which

obtain when R is fixed permanently at r*. To get another expression

equivalent to H*, we proceed as follows.

H* -=_*(z)

- H*(x,z)- E* (x)
z

- _*(x)+ H* (z)- H* (x)
X Z

Now H*(X) = H(X), since we have assumed that the distribution for X

is not dependent upon R_s values. Also, H*x (Z) = 0 since Z is a

determinate function of R and X. Consequently

_* =H(X) - H*z (X).

To get an expression equivalent to H#

H -_ H(R,Z)- Hz(R )

T(R:z)+ _(z)

--- T(R : Z)+ HR(X ) + HR,x(Z) -HR,z(X).

Since _x(Z) = O_ this simplifies to

H = T(R : Z) + _(X) - _,z(X).

The difference between H* and H is p :

,,, : - ,,++z(X)3-[ : z)+ - ]
/o - T(R : X) - T(R : Z) + [_,z(X) - H*z(X ) ] .

Let us examine these terms in turn. T(R : X) is of course m measure

of the coordination between R and X. It is bounded by H(R) and by

H(X)_ which are indicators of the "activity" of R and X. In fact if
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R takes values according to a mapping ya: X _ R_ then

T(R : X) = H(R)o The first term in the expression for _ , therefore,

indicates the statistical dependenceof R on X.

The next term, T(R : Z); can be interpreted as the amount of

information one obtains about R by observing Z. Earlier it was

remarked that this quantity is small to the degree that R regulates

successfully; T(R : Z) is boundedby H(Z), the output entropy which

R tries to minimize.

The last two terms_ _z(X) and H*z(X)_ can best be interpreted

in terms of fz" If fz has th_ property that for any ri, fz maps

X x r i one-to-one into Z (that is# no ri-row of fz has any repeated

entries), then HR (X) = H_/X) = O_ since given R and Z there is no,Z
uncertainty about X. In this case,

p:T(R : X) - T(R : Z)

and clearly _ _ T(R : X) always. This inequality is closely related

to, but not identical with, Ashby's "Law of Requisite Variety".

Back to interpreting the last two terms, it should be clear

that HR,z(X ) and H*z(X ) are nonzero only when there are rows of fz

(where rows correspond to values of R) with repeated entries, as in

the example on page 184. Formally, let

kip - number of X-values in the set

_xj I fz(Xj ' ri) = Zp

i,p

K = log k.

Then no row of fz has any z repeated more than k times, and

187
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consequently _,z(X) and H*z(X ) are both bounded by K. We will

occasionally refer to the number k as the multiplicity of the mapping fz"

The contribution to _ is the difference between H z(X ) and

H*z(X); the difference is of course bounded by K, and it can be posi-

tive or negative. Whenever H z(X ) is positive, H*z(X ) is necessarily

positive, so the difference is in fact always less than K, if K _ 0.

We collect these relationships in the following _heorem:

Theorem Vo2

p + [ Rz(X 
/o_TCR : X) + K

The amount of regulation which R can impose is limited by the trans-

mission between R and X, plus a quantity _,z(X) _ K.

Theorem V.3

T(R : X) = 0 _ f_O, regardless of K.

Proof :

We need only to show that T(R : X) = 0 iml_lies HR,z(X) = H*z(X).

Suppose T(R : X) = O.

m Hi (X)
_,z(X):Z P(ri)zi=l

where superscript i is used to indicate quantities which are

defined under the condition _ R _ = ri for all T _ . The identity

Hi(x)•_ (z):-Hi(z)._z(X)

together with the fact that _(Z) --0 gives

_(X) = Hi(x) - Hi(Z).

Since the distribution of X does not depend on R, Hi(x) - H*(X).

Substituting in the first equation, we obtain
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m

m

=E._x_- _ P_ Hi_z_
i=l

On the right is a weighted sum of terms each at least as large

as H*(Z). Thus

The right side of this inequality is H_z(X)_ for

_x) - E*(x)+_(z)u*Cz)

and H_(Z)= O. Q.E.D.

These last two theorems are cental to the understanding of

regulation. The first shows that there is a very definite bound

on regulation_ this bound being the transmission between the regulator

and the regulated variable_ plus an additional term which can be thought

of as indicating the congeniality of fz tQ regulation. The second

theorem says that re6ardless of the mapping, unless the regulator is

coordinated with the part it is trying to regulate it can do no better

than to perpetually take the value r*; taking any other values can

only degrade the regulation when T(R _ X) = O.

The situation is similar to that discussed earlier, where the

goal of R _as to maximize a probability. In both cases the goal can

be partly attained by permanently taking a "best" value r*_ and any

improvement over that can only take place if the regulator is coor-

dinated with the variable it hopes to regulate. Moreover the improve-

ment is limited by the amount of that coordination.

These results can be generalized to include slVuations in

which the goal of the regulator is to cause, at the output, a
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deterministic cycle of events, and to guard that cycle against

disturbances from X. The goal is to preserve constancy of a

repetitive output, in other words - a heartbeat cycle, say, or the

wing-flapping cycle of a bird° Such situations may be encoded into

a form in which the goal is constancy, as _efore, but it is more

convenient to deal with them directly through a _neralization of

our previous results.

We will consider, therefore, supervariables X, R, and Z

XT Rx Z xand the mapping fz : x --_ , and we will define quantities

analogous to those used earlier in this section. Whereas before we

used a superscript i to indicate quantities defined under the

condition [ R "_ = ri for all _ _ , here we use superscript j to

indicate the condition { R = (_)j _ , ioeo, the value R takes is the

Jth member of the set of all possible values for R. (The members can

be numbered, because the set of values is counta_ly infinite as shown

by the numbering scheme suggested below, when R_ takes one of the

values l, 2, or 3:

J

0 i, i, I, i, o..

1 2, i, i, i, ...

2 3, i, l, l, .o.

3 l, 2, l, l, ...

and so Ono In general,

k
j = _ (rk-l) (3k-l) where r

k--1
--Prk(r)j.)
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Now, in a manner strictly analogous to /he d_vel©pment before_

we define

HL = HL(z)

H Lj = HL(z) under the condition { R = (r)j _ .

HL* =sin { HLj } _ _J }
, or g.l.b, if there i_ no minimum.

j_l j_l

(r)* =the (r)j with smallest J s in the set _ (_)j I HLJ = HL*} .

L =H L* _H L.#

Some clarification may be helpful here. When we indicate that the

output information HL(z) is positive, this is subject,"_ to two interpre-

tations. One is that even if we are given all preceeding values of Z

sequence -_Z l, Z2_ ..._•Z_ _ ..., Zn) we are neverthelessin the
J

not certain what will come next_ even in the limi_ as n --_ _ .

Another interpretation is that in a number of "experiments" each

sequence [ zl_ Z2, .... } _ our uncertaintyyielding an infinite

as to which sequence will occur in any particular experiment is infinite;

that is, we cannot even designate beforehand a finite set of such se-

quences into which the new sequence must fall. This second interpre-

tation should make it clear that the condition .t _ = (r)j implies
J

HL(R) = O; that is, the regulator is deterministic. A deterministic

regulator, undergoing deterministic behavior, can minimize the infor-

mation in the output sequence by an auspicious choice of (_)jo The

degree to which the information is further reduced by non-deterministic

L

behavior of the regulator is measured by _ .

The reader should have little difficulty in seeing that our

development of the expression for _ serves also to yield an expression
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for _ L; one has only to superscript all the expressions with L

throughout. The result is given in the following theorem:

Theorem V.4

r - + [ - ]
L

f .__L(_:_) + K

The amount of regulation which R can i_p_se is limited by _(R : X),

plus the quantity ___,z(X) <_ K. The situation is exactly analogous

to that of theorem V.2.

Similarly the proof of theorem V.3, with only minor changes

such as the substitution of P C[(r)J .I] for P(ri) , etc., serves as

proof for the following:

Theorem V.5

TL(R : X) = 0 ==_
L

p <_ O, regardless of K.

This completes our generalization. The point of this chapter is just

this: regulation, whether the goal is maximizing or minimizing the

expectation of a particular set of outcomes, or is the suppression of

entropy, H(Z), or information, HL(z), can be partly attained by the

choice of auspicious permanent values or deterministic sequences - by

single-occurrence regulation, in other words. But to effect any

improvement over that, the regulator must coordinate his actions with

the system being regulated against, and the degree of that coordination

sets a bound on the regulation which can be achieved.

_.3. Important special cases of regulation

The last section indicated the importance of the quantities



T(R : X) and TL(R : X) to reguiatlcn. Few cons_:_'aintswere placed on

the general formulation, and in particular nething was mentioned about

which variables acted as input to the regulator R. in this section we

will briefly examine somecommonregulatory situations in the light of

the previous results.

193

5-3.i. Error-controlled feedback re6ulation

It is very common in texts on servomechanisms to see a diagram

of the sort shown in Figure 38_ X(s) is the "command" or reference

input, E(s) is the "error" signal, and Y(s) is the "controlled output"

signal. The servomechanism is generally considered successful if the

error signal is kept within prescribed limits, or its root-mean-square

value is lower than a given number_ or some other criterion is satisfied.

From our point of view_ the goal of the regulatory mechanism is

to keep the error signal as nearly constant as possible. Preserving

the topology but changing the names of the variables_ we can redraw

the diagram in our terms as shown in Figure 39- The mapping f corre-
z

sponding to the subtraction device in the servomechanism has multiplicity

one, ioe., HR,z(X ) = 0. Consequently, from theorems Vo2 and V.4,

f, <_T(R :x)

This configuration has the interesting property that R receives

information about X only through Z, and at the same time R is trying

to suppress entropy at Z. The regulator thus appears to be cutting off

its own source of information and lowering its own efficiency. Clearly

it cannot be fully successful at eliminating H(Z)_ for if H(Z) were zero,



194

×(s)
G(S)

H(S)

I Y(S)_

Figure 38.

(O_-_om_)

(a)
w

R

(b)

Outcome )

Figure 39°
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HL(z) would be zero and so also would HI'(R): by theorem 2V.12. Xf

HL(x) were positive we would have a c_ntradiction_ because the subtrac-

tion device, if one of the two inputs is known9 is not an ir2crmat!on -

losing mechanism. From this we c_nclude that regulation can never be

fully successful in an "error--controlled" re_Tala_or_ except in the de-

generate case o£ a deterministic input.

What is perhaps more surprising is that L is necessarily zero'

The "error" sequence must contain exactly as much i._ormation as the

input sequence, regardless of the activity of R. To see this; we note

that given a long sequence of Z, one can deduce the corresponding se-

quence of R (R, being passive, cannot generate information). And since

fz has multiplicity one, knowing R and Z is sufficier_t to deduce X.

Consequently from Z one can reconstruct X; the reverse is also true, so

HL(x) = HL(z). It is for this reason that we hedged above in saying

that R appears to be cutting off its own source of information; in fact,

it doesn't. The regulator is a mere recoder, preserving the information

but transforming it to a form with possibly lower entropy. The regu-

lation _ is the difference between the input entropy and the error

entropy,

f -- H* (z) - H(z)

- - Hiz)

since H*(Z) = H(X) whenever the multiplicity of fz is one.

If there are no memory-constraints in the input sequence_ i.e.,

if HL(x) = H(X)_ then the regulator's task is completely hopeless, since

such a sequence cannot be converted to a fozm with lower entropy without

losing information. Consequently f = O.
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This observation can be generalized further: if HL(x)-- H(X) -k,

so that the input sequencehas a memory-type constraint of M bits per

step, then F cannot exceed M, and consequently

H(X) - M _ H(Z) <_H(X).

TO show this we need only note that HE(z) = _(X) = H(X) - M bits per

step; the entropy H(Z) is minimized by encoding the information into a

form with no memory constraints, i.e., a form with H(Z) = HL(z), since

H(Z) < HL(z) is impossible. Therefore

H(z) H(x)- M

and /_ _< H(X) -[H(X) - M] = M.

The regulation is limited by the amount of [ per-step] sequen-

tial constraint in the input sequence.

It might appear that _ is limited by the channel capacity of R,

and that if the regulator is to achieve the maximum regulation of M

bits per step, it must have a channel capacity uf M bits per step, or

more. This is not necessarily so. If the input is deterministic, for

example, then M = [ H(X) - _(X)] = H(X), and R can achieve regulation

= M by following a deterministic sequence absolutely identical to

that of X. R can be a perfect regulator, that is, and can keep the

error sequence absolutely constant, even with a channel capacity of zero.

However it is true that _ is limited by the entropy of R, since

<_T(R : X) <_ H(R), and therefore if R is to regulate it must take

more than one value. We might say that regulation is limited by the

"variety" capacity of R.

To summarize: from the point of view of information theory, an

error-controlled feedback regulator cannot reduce the information in the
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error sequence; it can only take advantage of sequential constraints in

the input to reduce the entropy ofthe error sequence° If there are no

such constraints, regulation is impossible.

We are led to suppose_ therefore_ that the great variety of

applications in which error-controlled feedback regulators prove useful

all have one thing in common: the input sequences have sequeotial con-

straints, and probably very strong constraints.

5.3°2° Feed-forward re6_lation

In the error-contrclled regulator, R got its information about X

by way of Zo In the configuration we will discuss next, R gets this

information directly from X. This configuration, which wewill call

feed-forward regulation, is represented in Figure 40° This is the type

of regulation which occurs when one starts to fall but. catches himself,

or when an army which has obtained access to the enemy's battle plan

takes appropriate countermoves, or when an automobile driver activates

his own brakes whenever he notices the car ahead braking.

In most practical applications_ there is a delay between the time

the regulator obtains information about X and the time it acts on that

informationo We will take this into account by assuming that X does not

have an immediate effect on R but does have an effect on R one time unit

xl , v2 T-1later, ioeo, that RT depends on _ ; ooo; X but not on X o We will

assume that R_ is in fact dete_nnined by xl; X2 XT-I

The constraint between X_ and its predecessors in the X-sequence

isT(<xl,x2 x_-I x_ RL(_, ooo, _ : ); in the limit it is LH(X) - _=Mo

By the Collapsing Theorem for Transmissien_

,o xbT(R_: x_) _ T(<xl_ X2 .o_ > :
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Figure 40.
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since R is a function of +he earlier X_e. Thus we have

T(R _ x) _ M

and consequently p _ M + K_ _here 2K is the multiplicity of _he

mapping fz o

The assumed time delay thus leade to the conclusi©n that

can only be positive when there is memory constraint in the input se-

quence, and _ is limited by that constraint in the same way it was

limited in the error-controlled feedback regulator (except f_r the add-

itive term K, which in the feedback case we assumed was zero). This is

only common sense, of course; if R is to regulate on the basis of the

past history of X, there must be some c©r_elatio_ between that past and

the present value which R is trying to co1_nteract.

If fz has multiplicity one, then just as in the case of the feed-

back regulator R cannot reduce H_Z) to zero except in the degenerate

case of a deterministic X. And just as in that case_ and for the same

reasons, the channel capacity of R is not necessarily a bound for _.

If fz has multiplicity one, then surprisingly enough L is

necessarily zero, just as for the feedback regulator. That is,

HL(x) = HL(z)

and no action on R_s part can reduce the information at Z. To see this_

suppose that one has been given the values for XI, _; , XT-I•.o , and by

observing ZT he wants to deduce XT. This is always possible_ _ince if

XI XT-Io.._ are given, R_ can be calculated_ and when ZT and R_ are

known, there is no uncertainty about XT (when fz has multiplicity one).

Consequently if one is given some early values of X and then an indefi-

nitely long sequence of Z-values, one can deduce all the corresponding
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X-values. The same is true if the roles of X and Z are interchanged,

so the X-sequence and Z-sequence must carry the same amount of infor-

mation, regardless of R.

The similarities between regulation in the feedback and feed-

forward cases are striking; in fact there is no substantial point on

which they differ. Neither is able to block information, HL(z), at all

when fz is of multiplicity one. _ in each case is limited by sequential

constraints in X, and the regulators in both cases succeed, if they

succeed at all, only by making use of those constraints. Neither type

is capable of "perfect" regulation, that is, maintainence of absolute

constancy at Z, except in degenerate cases.

The close relationship between the two is apparent also in the

difficulty of deciding whether to classify a given example of regulation

as feed-back or feed-forward. When one is following the motions of a

tennis ball with his eyes, for example, are eye-movements guided by

information about the position of the ball, or by information about

the angular error? It would be difficult to say.

When the quality of regulation achievable by feedback or feed-

forward regulation is not sufficient, another type which we shall call

"parallel" regulation is often used.

5.3.3. Parallel re6mulation

In parallel regulation the regulator does not wait for X to

affect Z before starting to operate; it makes use of information from

the same source that affects X, as represented in Figure 41. The box D

represents a primary source of disturbances which affect X and R.
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( Outcome )

Figure 41.
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This is the type of regulation in which R is frequently thought

of as "anticipating" X, so that the regulatory action is simultaneous

with the action of X. A driver sees a child run into the street and

applies his brakes at the same time as the car ahead; a homeowner hears

of an imminent cold wave and starts up his furnace; a schoolteacher

smells fire and leads her students out of the building. As Ashby has

pointed out, many of our senses have been developed precisely to get

advance warning of disturbances, so that regulatory steps can be taken

before the outcome can be affected.

The job of the regulator, in fact, is to coordinate his actions

with those of X in such a way that the outcome is not affected, no matter

what disturbances arise, or in other words to match X in such a way that

the channel capacity from D to Z is zero. In contrast to the other

situations we have studied, this is possible with parallel regulation;

H(Z) can sometimes be made equal to zero.

Much depends on fz, of course. In the worst possible case, fz

maps X x R one-to-one into Z and all regulation is clearly impossible;

R can do no better than to pick some value ri and keep that value always.

If on the other hand there is a value zk and a mapping _ : X --_ R

such that fz(Xi, _(xi) ) = zk for all xi _ X, then perfect regulation

is possible, for whatever value X takes, R need only take the value _X)

to keep the output fixed at zk. In this case R can attain perfect reg-

ulation by acting in a manner isomorphic with X, for as was pointed out

earlier, if X and R are isomorphic machines subject to the same input,

they behave isomorphically and T(X : R)= H(X) - H(R).

To summarize: if for every value xi there is a corresponding
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value r i =/_(xi) such that fz_Xi_ ri_ is the same for all _9 then R

can attain perfect regulation (H<Z) = O) by being iso_rphic with X

and subject to the same input.

If fz is of multiplicity one_ then /L is limited by the channel

capacity of R_ and in any case_ since TL_R : X) _< HL(R)_

_L _ (channel capacity of R) + K.

Thus in parallel regulation_ the channel capacity of the regulator is

a fundamental limit on its ability to reduce the output i_formation

rate, a fact which is a pleasant complement to the fact that the capacity

also limits its ability to increase that rate.

This fact, that parallel regulation /o L is limited by the channel

capacity of the regulator, is a fundamental link between information

and control; it means that unless the situation is especially fortuitous

(i.e., fz is especially favorable to regulation so that [_;z(X) - H_(X)]

is positive), any attempt at regulation can only succeed to the degree

that the regulator has access to sufficient information, "knows how" to

transform it into appropriate action, and is able to carry out that

action. The channel capacity, and thus the regulation, is limited by

the weakest link in that chain.

5.4. Further remarks

The major restriction on the quantitative results in this chapter

is that they were derived under the assumption that X was not affected

by R; yet much of real-world regulation fits that assumption. Regulation

in complex systems is frequently in one of the three forms we have dis-

cussed, often with X and R being complex systems and Z being a vector

with components; the theorems developed above hold just as well in that
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case as when X, R, and Z are all very simple. Of course it requires

little imagination to concoct regulatory schemes which appear to be

more complex than any of the three basic forms, but further inspection

often shows that a scheme apparently more complex may be recoded into

one of the basic three or a simple combination of them.

Our purpose in this chapter, however, has been not to analyze

all common schemes but rather to indicate some of the primary relations

between information and regulation, to quantify these relations as

much as is feasible in a general discussion, and to illustrate these

relations by the three important examples. This_ we hope_ is a good

start toward a better understanding of regulation.



REFERENCES

2O5

lo Wiener, No Cybernetics° New York: Wiley, 1948.

2, McGill, WoJ. "Multivariate Information Transmissiono '_ Ps_chometrika,
June 1954, 19: 97-116o

3° Garner, WoRo Uncertaint_and Structure as Psychological Concepts.
New York: Wiley, 1962-U_ ......

4. Ashby, W. Ross° "Measuring the Internal Informational Exchange

in a System." Cybernetlca, 1965, l: 5-22.

5. Shannon, CoEo Mathematical Theory of Communication. Urbana:
University of Illinois Press, _964o

6. Ashby, Wo Ross. Introduction to Cyberneticso London: Chapman &
Hall, 1956o

7. Zadeh, L.A. "Fuzzy Sets." Information and Control , June 1965,
8: 338-53o

8. Ashby, W. Ross° Notes for course "Introduction to Cybernetics."

Urbana: University of Illinois, 1963o

9. Powers, S.G. Uncertainty_ in _Systems° BCL Report
Noo 8.0. Urbana: University _!llinois, 1967o

10. Elias, P., Feinstein, Ao, and Shannon, CoEo "A Note on the Maximum
Flow Through a Network." IRE Transactions on Information

Theo_, December 1956, _: 11---7-19.

ll. Simon, H.A@ "Architecture of Complexity." Proceedings of the

American Philosophical Societ_, Decembe_:--47_-82o

12. Conant, RoC. Cause and Effect Relations Within a Network.

BCL Report No----UB_. Urbana-_. University_----_f--Illinoi-------s,1967.

13. Reza, F.M. Introduction to Information Theory° New York:
McGraw-Hill, 1961o

14. Birch, J.Jo "Approximations for the Entropy for Functions of

Markov Chains." Annals of Mathematical Statistics, 1962,

33: 930-38.

15. Garner, W.R. and McGill, WoJ. "Relation Between Information and

Variance Analyses°" Ps_chometrika, September 1956,
21: 219-28.



206

REFERENCES (Cont.)

16.

17°

18o

Grodins, F.S. Control Theory and Biological Systems. New York:

Columbia University Press, 1963.

Fan., R.M. Transmission of Information, a Statistical Theory o_f

Communications° Cambridge: M.I.To Press, 1961.

Watanabe, S. and Abraham, C°To "Lossand Recovery of Information

by Coarse Observation of Stochastic Chain°" Information

and Control, September 1960, _: 248-78.



Unclassified
SecurityClassification

DOCUMENTCONTROL DATA . R&D
(Security classilicotion o[ £ide, body o[ abstract a_J indexing avmo£ation mus£ be en£ered u_en the oueraZl repor£ is c|assi[ied)

O_IGINATI_GACTIV_Y_ratecJ_IO_ 2_ REPORTSECURITYCLAS$1FICATION

nlversl_y or ±±llnOlS Unclassified

Biological Computer Laboratory 2_ GROUP

Urbana, Illinois 61801
REPORT TITLE

INFORMATION TRANSFER ON COMPLEX SYSTEMS, WITH APPLICATIONS TO REGULATIO_

4. DESCRIPTIVE NOTES (Type _ re_n m_ inel_i_ d_es)

scientific; technical; interim
S. AUTHORS) (L_t r_m_, first natal, m_)

Conant, Roger C.

REPORT DATE

January 1968
8(1. CONTRACT OR GRANT NO.

AF-AFOSR 7-67

_. PROJECT AND TASK NO.

70. TOTAL NO. OF PAGES | 7_. NO. OF REFS

206 J 18
So. ORIGINATOR'S REPORT NUMBER(S)

Tech. Report No. 13

9K OTI_ER ,R_pORT N_S) (Any Ot_r nule_rs _ may be

ass_gnea ross repor_l

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

I1. SUPPLEMENTARY NOTES I_ SPON_RING MILITARY ACTIVITY

Partial sponsorship also under AF Air Force Office of Scientific Res_

33(615)-3890, NASA Directorate of Information Science:

Arlington_ Virginia 22209
I_. ABSTRACT

This study is concerned with information theory and its relevance

to the study of complex systems. When information about every detail o:

their activity is kept, many systems are too complex to be manageable

and can only be dealt with by sacrificing detail. It is shown here tha °

multivariable information theory is capable of eliminating much detail

while preserving information about the interrelations between parts

of a system, even when those interrelations are very complex. A

procedure is described and exemplified, for example, which is helpful

in the decomposition of hierarchical systems.

It is shown, among other results, that when two variables are

related (in the set theoretic sense) the transmission between them is

maximized when their behaviors are isomorphic. This observation leads

to an algorithm for the computation of channel capacity for arbitrary

finite-state systems of a very general type.

The importance of information in regulatory processes is discussed

and quantified, and several basic regulatory schemes are discussed in

terms of the information involved, showing in an exact way how informa-

tion transfer and channel capacity limit the ability of any system to

act as a successful regulator.

Unclassified

Security Classification

arch



Unclassified

Security Classification

14.

KEY WORDS

Complex Systems

Multivariable Information Theory _j_ ....

Isomorphic Behavior

Channel Capacity

System Constraints

Feedback

Automata

Control

LINK A LINK B LINK C

ROLE WT ROLE WT ROLE WT

INSTRUCTIONS

I. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of
Defense activity or other organization (corporate author)

issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"'Restricted Data" is included. Marking is to he in accord-
once with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD
Directive 5200. I0 and Armed [_orces]ndustrial Manual.
Enter the group number. Also, when applicable, show that
optional markings have been used for Group 3 and Group 4
as authurized.

3. REPORT TITLE: Enter the complete report title in all
capital letters• Titles in all cases should be unclassified•
If u meaningful title cannot he selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e._., interim, progress, sumnmry, annual, or final
Gl%e the reclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial•
If military, show rank and branch of service. The name of
the principal author is anabsolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication•

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pares containmg information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
aubpro]ect number, system numbers, task number, etc.

90. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-

ciaI report number by which the document will be identified
and controlled by the originating activity• This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s)•

I0. AVAILABILITY/LIMITATION NOTICES: Enter any limi-
tations on further dissemination of the report, other than those
imposed by security classification, using standard statements
such as:

(I) "Qualified requesters may obtain copies of this
report from DDC."

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC. Other qualih_ed users
shall request through

(S) "All distribution of this report is controlled. Quali-
fied DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes•

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
isg [or) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual

summar]_ of the document indicative of the report, even
thouFh *t may also appear elsewhere in the body of the tech-
nicatreport. If additional space is required, a continuation
sheet shah be attached•

It is highly desirable that the abstract of classified re-
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information in the paragraph, represented as (TS), ($%
(CA or (U).

There is no limitation on the length of the abstract. How-
ever. the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the re_ort. Key words must he
selected an that no security classdication is required. Identi-
fiers, such as equipment model designation, trane name, mili-

tary project code name, geographic location, may be used as
key words but will be followed by an indication of technical
context. The assignment of links, rules, and weights is
optional.

Unclassified

Security Classification


